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Abstract

Schelling [Schelling, T.C., 1969. Models of Segregation. American Economic Review, Papers and
Proceedings, 59, 488-493, Schelling, T.C., 1971a. Dynamic Models of Segregation. Journal of
Mathematical Sociology, 1 (2), 143–186, Schelling, T.C., 1971b. On the Ecology of Micromotives. The
Public Interest, 25, 61–98, Schelling, T.C., 1978. Micromotives and Macrobehavior. New York: Norton.]
presented a microeconomic model showing how an integrated city could unravel to a rather segregated city,
notwithstanding relatively mild assumptions concerning the individual agents' preferences, i.e., no agent
preferring the resulting segregation. We examine the robustness of Schelling's model, focusing in particular
on its driving force: the individual preferences. We show that even if all individual agents have a strict
preference for perfect integration, best-response dynamics may lead to segregation. This raises some doubts
on the ability of public policies to generate integration through the promotion of openness and tolerance
with respect to diversity. We also argue that the one-dimensional and two-dimensional versions of
Schelling's spatial proximity model are in fact two qualitatively very different models of segregation.
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1. Introduction

Schelling (1969, 1971a,b, 1978) presented a microeconomic model of neighborhood
segregation that Schelling (1971a) called a “spatial proximity model” (p. 149), as it specifies a
spatial setup in which the individual agents care only about the composition of their own local
neighborhood. More specifically, distinguishing two types of agents, every agent is assumed to be
equally happy with any configuration of his neighborhood except that he does not tolerate more
than a certain fraction of it, e.g. 50 or 60%, to be populated by agents of the other type. Unsatisfied
agents get the chance (in some arbitrary order) to move to a satisfactory position, until nobody
wants to move anymore. Lo and behold, an unraveling process starts from amore or less integrated
city into a rather segregated one.

Schelling's neighborhood segregation model has become one of the most widely cited and
acclaimed models in economics.1 There are several reasons for this. First, the emergence of
segregation seems intellectually intriguing. Micromotives at the local level give rise to macro-
behavior at the aggregate (global) level, but this emerging macrobehavior does not simply
correspond to the underlying micromotives, i.e., segregation occurs although no individual agent
strictly prefers this. Moreover, it appears to be one of the very first models of complexity and self-
organization in economics. Another reason for the fame of Schelling's model is educational. It is
unusually simple. Combined with its intellectual appeal, this makes it a convenient means to
illustrate the idea of unintended consequences resulting from the interaction between individuals.
What is more, the model is a ‘do-it-yourself’model of self-organization, as it can be easily verified
by anyone with a pen and paper. The other main reason for the interest in Schelling's model is
related to the fact that segregation has become one of the most important socio-political and public
economic issues. It has been so for some time in the USA, and has increasingly become one also in
many Western-European countries.2,3

Notwithstanding the general recognition given to Schelling's model nowadays, it leaves some
question marks concerning the assumptions made with respect to the individual agents' pref-
erences. That is, although these assumptions are relatively mild in the sense that no agent prefers
segregation, it is also true that no agent is against it. In other words, while agents in Schelling's
model are content to live together in a ratio of 50–50, they are equally content to live in a
completely segregated city, as long as they can live in a ghetto of like agents. Since these
preferences are the driving force in Schelling's model of segregation, it is worth investigating
whether this is essential. Therefore, we provide a formal as well as numerical analysis of the
properties of Schelling's model of segregation.

The emphasis of our analysis is on myopic best-response dynamics. But we also provide a
complete myopic equilibrium characterization. This characterization makes clear that the best-
response dynamics in the model are not an equilibrium selection issue. While in the two-
dimensional setup, the equilibria are over-represented in the set of best-response outcomes, in the
1 See, e.g., Akerlof (1997), Arrow (1998), Rosser (1999), Binmore (1992), Blume (1997), Brock and Durlauf (2001),
Clark (1991), Dixit and Nalebuff (1991), Glaeser and Scheinkman (2002), Ioannides and Seslen (2002), Krugman (1996),
Lindbeck et al. (1999), Manski (2000), Skyrms and Pemantle (2000), or Young (1998).
2 See, e.g., The Economist (2001).
3 Notice that segregation occurs not only in a racial context. It can also be found between followers of different

religions, between men and women in an office canteen, between tourists and locals at a city square, between faculty and
students in a seminar room, between different nationalities at a conference dinner, between workers with different skills in
different firms, or between different species occupying their own territory.
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one-dimensional model with a strict preference for integration, the best-response dynamics do not
select an equilibrium at all. Instead, the completely segregated outcome prevails, which is the very
opposite of any equilibrium, in the sense that the latter are all perfectly integrated. This suggests
that one should be careful not to focus exclusively on equilibria when studying social dynamic
processes.

Focusing on the driving force behind the dynamic behavior of Schelling's model, the individual
preferences, we keep all other details as general and simple as possible. The main insight from our
analysis can be summarized as follows. Schelling's model of segregation is robust. Schelling's mild
assumptions on the individual preferences for integration can be made considerably more extreme.
Even strict preferences for perfect integration by all individual agents may lead to neighborhood
segregation. Moreover, for the one-dimensional setup, we prove that such preferences are sufficient
for complete segregation. Thus, the paper sharpens Schelling's insight: altering agents' preferences
might do nothing to reverse the undesirable outcome. In particular, stronger (in the sense made clear
below) preferences for integration need not result in more integration.

The remainder of this paper is structured as follows. Section 2 explains why segregation is a
key public economic policy issue. In Section 3 we briefly recapitulate Schelling's (1969, 1971a,b,
1978) spatial proximity model of segregation and outline the features of the model that we are
going to analyze in detail. Section 4 presents some analytical tools and benchmark allocations.
Schelling's two-dimensional model is analyzed in Section 5, while the one-dimensional, linear
model is considered in Section 6, and Section 7 concludes.

2. Segregation as public economic policy issue

The spatial proximity model relates the segregation issue directly to a number of traditional
issues in the public economics literature. The dynamics of the spatial proximity model, i.e., the
entire unraveling process from integration to segregation, is driven by externalities, leading to a
failure of the Coase theorem. These externalities arise as the private location decision of an
individual alters the composition of neighborhoods of other people. The individual characteristics
that enter neighbors' preferences are not priced in the housingmarket. For instance, the ask price of
a house is independent of how valuable a neighbor a prospective buyer would be. But the neigh-
bors might care for the characteristics of who eventually buys the house. The spatial proximity
model focuses on the importance of these externalities.

The spatial proximity model of segregation is closely related to the Tiebout model. According
to Tiebout (1956), people can sort themselves into communities according to their public goods
preferences. Various problems with this model have been pointed out in the literature, “such as the
restricted number of communities, the multidimensional nature of public goods, limitations to
mobility, and economies of scale in public goods provision” (see Alesina et al., 1999, p. 1246–47,
and the references therein). The spatial proximity model qualifies the optimistic conclusion of the
Tiebout model. Once a society is segregated, this restricts the mobility of the individuals, as entire
areas may become ‘no-go’ zones for certain groups. This inhibits Tiebout sorting by preferences
for the public good.

Alesina et al. (1999) argue that in cities where ethnic groups are polarized, and where
politicians have ethnic constituencies, the share of spending that goes to public goods is low.
More specifically, they document how ethnic fragmentation may influence local public goods,
as reflected in the composition of spending, the aggregate total of spending, and the budget
balance. This concerns in particular core public goods such as education, roads and urban
transportation systems, sewerage, and trash pickup. This is because people might value public
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goods more to the extent that they benefit their own group and discount the benefits for other
groups.

The relationships between segregation, school finance and school choice have been studied
by Nechyba (2003). Residential and school segregation seem to go hand-in-hand, and school
segregation may lead in turn to underachievement and disadvantages in the labor market. The
effect of segregation on educational outcomes has been explored by Cutler and Glaeser
(1997).

Baughman (2004) studies the effect of segregation on the effectiveness of campaigns to
expand public health insurance for children. She argues that residential segregation affects child
health insurance coverage through its effect on community-level outreach and information
networks.

Low supply of public goods such as education, transportation or health care, may in turn lead
to vicious cycles, with segregated groups falling further behind. As Alesina et al. note, if public
schools provision is low because of ethnic conflict, “the relative skill levels of minorities in
ghettos does not improve and their poverty level increases, making problems of central cities'
unemployment and decay even worse-and ethnic conflicts even more acute” (p. 1247). Similarly,
Wilson (1996) notes that poor public transportation systems from inner city ghettos to the location
of job opportunities increase the costs of finding and keeping jobs for inner city minorities.

Brender (2005) argues that segregation may affect local tax collection as a share of the total
amount charged by law, thus worsening the situation for the disadvantaged minority through a
low supply of public services.

Besides these more traditional public economics issues mentioned above, a number of related
public policy issues have emerged in the last few years. Segregation enhances a lack of shared
language, cultural values and norms. This makes social coordination more difficult. Some have
argued that segregation puts the whole idea of a peaceful society with its constitutional and civic
liberties at risk (see, e.g., Scheffer, 2000). One of the remarkable aspects in the war on terror has
been that a number of terror suspects turned out to be citizens that had been born and raised in the
countries they were fighting. Kepel (2004) even claims that the war on terror will be decided in
the suburbs of Europe, where the key question will be whether the Muslim communities there will
successfully integrate or not.

Substantial public spending is related to the aforementioned issues. In addition, a further sign
of the increased recognition that integration is a key public policy problem can be seen in the
amounts explicitly earmarked for ‘integration’ in the governments' budgets. For example, in The
Netherlands this increased from just €9 million in 1970 to €1.1 billion in 2003 (see Commissie
Blok, 2004).

As segregation has increasingly been recognized as one of the most important public policy
issues in countries such as the UK, the Netherlands, France, and Germany, various countries have
started evaluating and questioning the effectiveness of decades of integration policies (see
Baldwin and Rozenberg, 2004; Commissie Blok, 2004). The prevalent form of integration policy
in countries such as the UK and the Netherlands has been one promoting multiculturalism:
respecting diversity and allowing integration. This policy has failed in that integration simply did
not happen.4 The spatial proximity model provides a possible answer why this could have been
expected.
4 Although the formal conclusion of Commissie Blok (2004) was positive about the Dutch integration policies, all
political parties were unanimous in their fierce criticism during the parliamentary debate following its presentation.
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Before we go into the details of the spatial proximity model, let us discuss some possible
integration policies. A first possibility is to internalize the externality that drives the unraveling of
integration, i.e., the externality stemming from the moving agent's neglect of the wellbeing of his
past and future neighbors. This is, for example, partly achieved by the so-called Manhattan
co-ops,5 where newcomers are screened by their prospective neighbors, and board approval is
required for apartment purchases (see New York Law Journal, 1997).

The first-best outcome could be difficult to achieve and maintain even for a benevolent
planner. Integrated allocations are almost by definition characterized by very particular
residential patterns. It might be difficult to work out an integrated pattern in which nobody
wants to move, while it might be even more difficult to find such integrated patterns that are
robust to small disturbances. Furthermore, centralized imposition of integration may often
entail a more substantial policy intervention than merely enforcing coordination. In particular,
in many countries, the law does not give the right to impose and enforce integration, as
shown, e.g., by the Missouri v. Jenkins Supreme Court case in the US in 1995. More
recently, attempts by the Dutch government to increase educational integration failed due to
the constitutional right of (state-funded) religious schools to reject pupils with different
beliefs.

Given the difficulties experienced with other policy measures aimed at integration, it is not
surprising that the most frequently adopted policy has been to shape the individual citizen's
preferences, promoting openness and tolerance with respect to diversity. The spatial proximity
model focuses on the ramifications of such a policy. The stark conclusion is that a wide class of
preferences for integration results in extreme segregation. Any integration policy must be based on
a good understanding of the mechanisms underlying this result. The analysis suggests that
education of preferences is not sufficient to achieve integration. It should be complemented by the
coordinating role of a government designed to avoid convergence towards extremely segregated
outcomes.

3. Schelling's spatial proximity model

3.1. Recapitulation of Schelling (1969, 1971a,b, 1978)

There are two basic variants of Schelling's spatial proximity model. The first version, presented
in Schelling (1969), is a one-dimensional model. Besides this linear model, Schelling (1971a)
presents a two-dimensional version as well, which is also the version appearing in Schelling
(1971b, 1978).

Schelling (1969, 1971a) considers a number of individual agents, distinguishing two types of
individuals (O and X), distributed along a line, i.e., in one dimension (1D).6 An agent's position
is defined relative to his neighbors only, and there are no absolute positions. A given
individual's neighborhood is defined as the four nearest neighbors on either side of him.7

Agents towards the end of the line will have less than eight neighbors. Each individual is
5 Most apartment blocks in Manhattan — about 80%— are co-ops.
6 The number of individuals can be finite, but Schelling (1971a) also refers to the possibility of an infinitely continuing

line or a line closing in a ring (p. 152).
7 Notice that the spatial proximity model differs from the so-called ‘bounded neighborhood’ or ‘tipping’ model

of segregation (see Schelling, 1969, 1971a, 1972, 1978)) in that each individual has his own, locally defined
neighborhood.
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concerned only with the number of like and unlike neighbors.8 More specifically, each agent
wants at most 50% unlike neighbors; otherwise agents are indifferent. The starting configuration
is created by distributing equal numbers of agents of each type in random order. The dynamics,
then, are an iterative process of agents choosing myopic best-responses. At each stage all agents
that are not satisfied are put in some arbitrary order. When an agent's turn comes, he moves to
the nearest satisfactory position. Since all positions are relative only, he simply inserts himself
between two agents (or at either end of the line). Similarly, his own departure does not lead
to an empty position.9 This process continues until no agent wants to move anymore. The
typical outcome is a highly segregated state, although nobody actually prefers segregation to
integration.

Schelling (1971a,b, 1978) considers a regular lattice with bounds, such as a checkerboard.
There are again two types of agents, who can each occupy one cell of the board. But now there are
also some free cells left. The neighborhood of an individual agent is the so-called Moore
neighborhood. For an agent in the interior of the board this consists of the eight cells directly
surrounding his own location, with fewer neighbors for agents at the boundary. Absolute rather
than relative positions characterize this two dimensional (2D) setup, and agents can only move to
empty positions.10,11

The preferences considered in Schelling (1971a) are the same as for the one-dimensional model
(each agent accepts up to 50% of unlike neighbors), whereas Schelling (1971b, 1978) also
considers the possibility that agents accept up to 2/3 of unlike neighbors. The starting state is
typically highly integrated.12 The best-response dynamics, then, work as follows. All unsatisfied
agents are put on a list in some arbitrary order.When an agent's turn comes, hemoves to the nearest
available satisfactory position. At the next stage a new list is compiled, and so on. This process
continues until no agent wants to move anymore. Again, the typical outcome is a highly segregated
state.

3.2. Schelling's model revisited

Many details of Schelling (1969, 1971a,b, 1978) can be varied, but our focus is on the driving
force behind the dynamic process, the individual preferences, while other details are kept as
simple and general as possible. We consider utility functions that imply a strict preference for
perfect integration. That is, all individual agents with such preferences strictly dislike living in a
segregated neighborhood, even if they are a part of the majority. Our analysis is invariant to any
positive monotonic transformation of these utility functions.

Let the utility function of an individual agent be u. Denote the percentage of his neighbors
consisting of the other type as x (0≤x≤100), and the maximum tolerable percentage of unlike
8 Notice that local preferences are exemplified in the so-called NIMBY (Not In My BackYard) attitude. They may be
explained by the fact that, as Quinn puts it, “(t)hat's where you mow the lawn, you shovel the snow, and the kids play
together” (The Economist, 2003, p. 50).
9 Alternatively, one could interpret the 1D model as one with a continuous action space, and the agents taking up a

negligible amount of space themselves, such that there is always space between any two agents available.
10 The reason is that transferring the moving technique used in 1D to 2D leads to some complications. It is not clear in
which dimension one should create space or close empty spaces on a lattice. Further, when creating or closing space in
one direction, all other agents on that row (column) would see their neighborhood altered, as would all agents on the
adjacent rows (columns).
11 See also Sakoda (1971), which is based on Sakoda (1949), for a very similar model of endogenous interactions.
12 Schelling (1971a) starts with a random initial distribution of agents, while Schelling (1971b, 1978) creates the starting
configuration by reshuffling a perfectly integrated board.
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neighbors as c. Then, the class of individual preferences considered can be represented as
follows:

uðxÞ ¼ aþ dð50−jx−50jÞ for xb50 and 50bxVc
aþ dð50−jx−50jÞ þ b for x ¼ 50
0 for xNc and if x not defined ði:e:; no neighborsÞ;13

with aN0, 50≤c≤100, d≥0, and b≥0.
The first utility function that we consider is based on Schelling (1969, 1971a,b, 1978), and is the

weakest one with respect to preferences for integration, setting b=d=0 and c=50 (see Fig. 1a).
This utility function consists of two entirely flat pieces with a discrete drop in utility at a cut-off
point of 50%. Thus, an agent is indifferent between a neighborhood without any unlike agents and
any neighborhood with up to 50% unlike neighbors, and perfect integration is no better than
complete segregation as long as an agent can live among his own type.

An essential change we introduce next concerns the rising part up to a peak at a 50–50
neighborhood (dN0), while retaining the cut-off point and the flat part beyond it, i.e., c=50 (see
the p50 utility function in Fig. 1b). While such an agent still has aversion to being in a minority,
he now has a strict preference for perfect integration, preferring this to any majority of like
agents.

We also consider a peaked utility function (dN0) with the cut-off point removed (c=100).
This is represented by the perfectly symmetric single-peaked utility function p100 in Fig. 1c.
Such an agent has no bias in favor of like agents at all. He strictly prefers living in a perfectly
integrated neighborhood, but any neighborhood with x% like or x% unlike neighbors is equally
good.
13 For what the two-dimensional model concerns, Schelling (1971a,b, 1978) distinguishes preferences expressed in
absolute terms (number of like or unlike agents within a neighborhood) or relative terms (ratio of like to unlike neighbors
within a neighborhood), but in neither case specifies preferences over completely empty neighborhoods. We assume that
empty neighborhoods are the least preferred, on which none of our results depend.
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Finally, we consider a spiked utility function that emphasizes the strict preference for perfect
integration by rendering an individual indifferent with respect to any other configuration, setting
a=d=0 and bN0 (see Fig. 1d). Here agents are driven exclusively by their obsession to live in a
perfectly integrated neighborhood.

Given the preferences, the behavioral assumption made by Schelling (1969, 1971a,b, 1978) is
that of myopic best-responses (BR). Schelling, however, also assumes inertia. That is, satisfied
agents will always stay put, whereas it is not clear what happens with non-satisfied agents who
cannot find a satisfactory position. What is more, Schelling assumes that players move to the
nearest satisfactory position. Both assumptions can be justified by some moving technology. The
cost of moving would need to be strictly increasing with distance, but even for the largest possible
distance it would need to be smaller than any possible strictly positive difference in utility between
two locations.

We abstract from this implicit assumption of moving costs to focus on preferences. That is, a
player chooses a best-response with probability one, but in case of indifference between more than
one optimal position (possibly including his current position), he chooses equiprobably among
them.

We also simplify the order of the moves. In Schelling (1969, 1971a,b, 1978) all unsatisfied
agents simultaneously put their name on a list, which is, then, processed sequentially in some
arbitrary order, after which a new list is drawn, etc.14 We simply select at each stage one agent
uniform randomly, and ask him to choose a best-response.15 In Pancs and Vriend (2003) we
also analyze the possibility that all agents simultaneously choose a best-response to the current
state.16

Next, we specify the spatial setting. In all setups analyzed, we consider neighborhoods defined
in terms of the eight nearest surrounding positions (for agents in the interior). In 2D we focus on
the standard board specification, while in the 1D setup we concentrate on a ring. The reason to
focus on a board instead of a torus is that 2D tori do not seem to appear frequently in reality. The
usual justification for considering a torus is that it is an approximation of an indefinitely extending
two-dimensional space. It is unclear, though, that this is a meaningful approximation, especially
when the underlying lattice is relatively small. No results depend crucially on this choice.

As to the one-dimensional setup, we focus on a ring for two reasons. First, a ring, unlike a 2D
torus, is relatively natural (e.g., in the form of a ring road in a city, chairs around a table, the
shoreline of an island or lake, or the 24 h around the clock). Second, the positions near the
boundary of a finite line have a huge impact on the existence of equilibria, which is an artifact
caused by the shrinking size of a neighborhood for agents close to the edges. Schelling (1971a)
explains that for k+k neighborhoods with odd k, alternating equilibria disappear. However, this is
also the case for even k. Furthermore, with the peaked and spiked utility functions that we consider
all (pure strategy) equilibria disappear for any k.17
14 Notice that Schelling's specification does not seem very natural from a game-theoretic perspective: a currently satisfied
agent might want to put his name on the list anyway, as he might no longer be satisfied at the moment his turn would come.
15 Hence, although we do not consider any noise per se, there are three sources of randomness in our model: the initial
allocations, the order of moves, and the way indifferences are resolved.
16 In case of conflicting choices in the 2D setup (two or more agents simultaneously choosing the same location), we
randomly allow one of these to be realized. We, however, do not consider the possibility of simultaneously choices in the
1D setup, because of the conceptual difficulties arising from conflicting choices.
17 Any ad hoc cures, e.g., modifying the utility function for agents near the edges, would rob the model of one of its
major advantages: simplicity.



9R. Pancs, N.J. Vriend / Journal of Public Economics 91 (2007) 1–24
4. Analytical tools and benchmark allocations

Given the model as specified in Section 3, we need to characterize the outcomes of the BR
dynamics. To do so, in this subsection, we present two benchmark allocations, and define the
measures summarizing the degree of segregation of these allocations.

4.1. Benchmark allocations

In order to characterize the set of all possible steady-states of BR dynamics, we first introduce
the concept of aMyopic Nash Equilibrium (MNE), describing all those configurations in which no
agent can find a better location given the locations currently chosen by the other players. This
equilibrium is myopic since the dynamic structure of the game is disregarded.18 Notice that the set
of MNE would be of special interest to a social planner who could affect the initial allocation of
agents.

Definition 1. Let zi∈Zi be the location of player i, such that zi≠ zj for i≠ j, and let vi(z) be the
payoff of agent i from z. Then z⁎=(zi⁎, z− i⁎) is a Myopic Nash Equilibrium (MNE) iff, for all
zi∈Zi such that zi≠ zj⁎ for all i and j, vi(zi⁎, z− i⁎)≥vi(zi, z− i⁎). A MNE is strict if these inequalities
are all strict, and a MNE is weak otherwise.

The second benchmark is the set of all possible allocations, which in case of the 2D version we
approximate by a sample of random allocations. This benchmark allows to tell in which sense the
MNE or the BR outcomes are out of the ordinary.

Definition 2. In a random allocation the probability that any given location is occupied by a
particular type equals the ratio of the number of agents of this type to the number of possible
locations.

A random allocation is likely to be rather integrated, with many agents having neighbors of
both types. A segregated allocation describes the opposite case, when few agents have neighbors
of the opposite type. The concept of a completely segregated allocation is specific to the seg-
regation measure used. Complete segregation occurs if the segregation measure records the
lowest possible level of integration. When describing an individual neighborhood, the concepts of
perfect integration and complete segregation have the following meanings.

Definition 3. A neighborhood is perfectly integrated if it contains equal numbers of agents of each
type.

Definition 4. A neighborhood is completely segregated if it contains agents of only one type.

When analyzing the myopic best-response dynamics, the following two terms are used: a
period and a run.

Definition 5. A period is an instance when an agent is offered an opportunity to move.

Definition 6. A run corresponds to an independently executed best-response sequence. In a run of n
periods, n agents are chosen sequentially to make a location decision. Each choice is an identical and
independent draw from the set of agents, with each agent facing the same probability of being chosen.
18 In other words, the equilibrium is in locations rather than dynamic strategies.
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4.2. Segregation measures

We use the following measures of segregation.

4.2.1. Clusters
This measure counts the number of clusters that can be distinguished. Two agents belong to the

same cluster if they are of the same type and they are, either directly or indirectly, linked laterally.
Two agents are directly linked if they neighbor each other either horizontally or vertically.
Moreover, if agent i belongs to the same cluster as agent j, and agent j to the same cluster as agent
k, then agents i and k belong to the same cluster as well. An indirect lateral link goes through an
uncontended zone of empty cells (‘blanks’). Two blanks belong to the same zone if they are
laterally linked, applying the same transitive relationship as above. Such a zone is contended if its
neighbors, horizontally or vertically, are agents of different types, otherwise it is uncontended.19

The one-dimensional version of the cluster measure is a straightforward simplification, as there
are no blanks. A cluster measure, which is equivalent to the average cluster size, was used in
Schelling (1969, 1971a,b, 1978), without being formally defined. The cluster measure does not
take into account how large individual clusters are, or how integrated (or not) agents within a
cluster are.

4.2.2. Switch rate
Take the position of a given agent, and make one full turn to observe all his neighbors. Letmi be

the number of agent i's neighbors if it exceeds one, while it is zero otherwise. Let li be the number
of switches, defined as the number of times that the type of a neighbor changes as we complete the
turn, ignoring blanks. The switch rate, then, is Σili /Σimi. The switch rate, unlike the cluster
measure, cares about patterns. It measures how integrated neighborhoods are, as seen by the
individual agents.20

4.2.3. Distance
Let ri be the minimal number of cells which need to be traveled by agent i (either laterally or

diagonally) to reach an unlike agent, and ti be the minimal number of cells to reach a like agent. The
distance measure is: (1 /N )Σi(ri / ti), where N denotes the total number of agents.

4.2.4. Mix deviation
For a given agent i, let pi be the absolute deviation from a 50–50 neighborhood: pi= |0.50−gi /

(gi+ fi )|, where gi is the number of like agents in agent i's neighborhood (excluding the agent
himself ), fi is the number of unlike agents, and pi=0 for agents with empty neighborhoods. The
mix deviation measure, then, is: (1 /N )Σipi.

4.2.5. Share
For a given agent i, let gi and fi be again the number of like and unlike agents respectively in

his neighborhood. The share measure, then, is: Σigi / (Σigi+Σi fi ), where agents with empty
neighborhoods are ignored. The measure is based on Schelling (1969, 1971a). A difference with
the mix deviation is that it computes a weighted average of individual shares.
19 The extension of the measure to diagonal links is not straightforward, as one would need to define the concept of
contended diagonal links, which can give rise to counterintuitive results.
20 Notice that agents with one or no neighbors are ignored, as no switches are possible for such neighborhoods. In the
1D setup the switch rate is equivalent to the clusters measure.



Fig. 2. Random allocations, 5×5 board.
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4.2.6. Ghetto rate
This measures the number of agents that lives in a neighborhood without any unlike neighbor.

This measure, due to Schelling (1969), is a somewhat crude one as it treats having one unlike
neighbor the same as having eight unlike neighbors.

Thesemeasures will be correlated to some extent, but they will each stress slightly different aspects
of segregation. The emphasis is on segregation, rather than on some utility basedmeasure, because this
gives us an exogenous criterion to assess the consequences of different individual utility functions.21

5. Analysis of two-dimensional setup

5.1. 5×5 board

We start analyzing the model with a 5×5 board, with ten agents of each type, and five empty
locations.22 Fig. 2 shows the distribution of clusters for a million random allocations. The dis-
tribution is rather symmetric, with the 20 agents forming on average 7.8 clusters.

Table 1 shows the number of existing MNE for the flat and two peaked (p50 and p100) utility
functions.23 The search for MNE is exhaustive, i.e., we try all the possible configurations on the
board. The number of MNE is of a similar order of magnitude for the flat and the p100 utility
functions, whereas it is much lower for the p50 function.24 Also, all MNE for the flat and p50
utility functions are non-strict, whereas almost 10% is strict with the p100 function.
21 This approach would correspond to a government envisaging a desired outcome, such as multiculturalism or
integration, and then implementing policies to induce particular individual attitudes. Typically, the literature on
segregation uses measures designed on the basis of pre-defined and distinguishable neighborhoods (e.g., Census tracts).
These measures can be classified along five dimensions: evenness (dissimilarity), exposure (isolation), concentration,
centralization, and clustering (see, e.g., Cutler and Glaeser, 1997; Cutler et al., 1999; Frankel and Volij, 2004; Massey and
Denton, 1988; White, 1983, 1986). While there are no pre-defined neighborhoods in the Schelling model, our mix
deviation and share measures can be seen as measures of evenness, our ghetto and switch rate measure exposure, and our
cluster and distance measures concern clustering.
22 The reason to start with a 5×5 board is its tractability. In the analysis of the 2D we always allocate 40% of locations to
each type, leaving 20% empty.
23 Since for the 2D setup the findings for the spiked utility function are very similar to the p100 function, we omit them
throughout. These results are available from the authors upon request.
24 When counting allocations, those obtained by swapping Os and Xs are not distinguished. Mirrored or rotated
allocations are, however, distinguished because, for example, the number of distinct rotations depends on the degree of
symmetry of a particular allocation.



Table 1
Number of existing MNE, 5×5 board

MNE

Flat utility p50 p100

Non-strict MNE 430,110 2880 351,472
Strict MNE 0 0 36,482
Total MNE 430,110 2880 387,954
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Fig. 3a to c show the frequency distribution of the cluster measure for the set of MNE for the
flat and peaked utility functions. The MNE with the flat utility function are concentrated in the
lower half of the range found for random allocations, with an average of 4.3 clusters per MNE.

Notice that the set of MNE for the p50 utility function is a subset of the MNE for the flat utility
function.25 The question, then, is which MNE of Fig. 3a will survive with the p50 function. Given
the strict preference for perfect integration, one might conjecture that the subset of MNE will be
more integrated. However, as Fig. 3b shows, this turns out to be incorrect. The average of the 2880
MNE with the p50 utility function has 3.6 clusters, with a majority (64%) characterized by
complete segregation. The distribution of the set ofMNE for the p100 utility function looks similar
to that for the flat utility function, with 4.0 clusters on average.

While there is little reason to expect MNE to be a focal point of the best-response dynamics, it
is instructive to see by how much and in which direction the best-response dynamics outcomes
deviate from the set of MNE. The best-response dynamics are started from random allocations.
The initial allocations do not matter, unless it is a strict MNE with p100 utility, in which case no
agent would wish to move. Notice that the number of strict MNE is negligible relative to the total
number of possible allocations.

Fig. 4a to c show the outcomes of best-response (BR) dynamics, without inertia, for each of the
three utility functions. Each diagram depicts the distribution of clusters for 1000 runs after
100,000 periods. In Fig. 4a, for the flat utility function, 91% of the runs end in complete
segregation, with 2.1 clusters on average. As Fig. 4b shows, with strict preferences for perfect
integration, there is even more segregation. In 98% of the runs we observe complete segregation
after 100,000 periods. The average is 2.0 clusters. The results for the p100 utility function are less
stark. In Fig. 4c, the distribution of outcomes of the BR dynamics is not very different from the set
of MNE. On average there are 5.0 clusters. Although complete segregation seems to be avoided,
this still implies more segregation than with random allocations, where we observed on average
7.8 clusters.

To demonstrate that our results are not sensitive to the choice of the segregation measure, Table 2
summarizes the results for all segregation measures we defined. For each of the measures there is
hardly any difference between the outcomes of the BR dynamics with the flat and p50 function.
While there are fewer clusters with the p50 than with the flat function, the other measures suggest
there is slightly more segregation with the flat than with the p50 utility function.26
25 If it is not possible to find a better location for an agent with the p50 utility function, then it is also impossible with the
flat utility function. But the opposite is not true. Suppose an agent lives in a large-majority neighborhood while a
perfectly integrated location is available. With a flat utility function this could be part of a MNE, whereas an agent with
the p50 utility function would deviate to that empty position.
26 The reason to emphasize the clusters measure is that it seems to capture the notion of segregation best at the intuitive
level.



Fig. 3. a. MNE, flat utility, 5×5 board. b. MNE, p50 utility, 5×5 board. c. MNE, p100 utility, 5×5 board.
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Table 3 shows the substantial number of MNE reached by the BR dynamics. Although the
number of existing MNE is very small with the p50 utility function, BR dynamics lead to a MNE
in 37% of cases. This is of the same order of magnitude as the number of MNE reached with the
flat utility function (40%). With the p100 function we essentially always end up in a MNE, with
most cases being a strict MNE. This shows that even non-strict MNE act as attractors.

The numbers in Table 3 can be compared to the number of MNE one would expect in a sample
of random allocations. Accounting for X/O symmetry, there are

1
2

25
10

� �
15
10

� � ¼ 4; 908; 043; 140
possible allocations. This means that, given the number of MNE shown in Table 1, for the flat and
p50 utility functions, where all MNE are non-strict, a random sample of 1000 allocations most
likely would contain no MNE. For the flat utility function the expected number of MNE in 1000
random allocations is 1000 430; 110

4; 908; 043; 140
c0:09 and for the p50 function it is even much lower. For the

p100 function matters are slightly different, because some of the MNE are strict. Assuming that
each of the 100,000 periods is a random draw, out of 1000 runs one would expect 524 strict MNE
and no weak ones: 1000 1− 1− 36;482

4;908;043;140

� �100;000
� �

c524. The BR dynamics, however, give 854 strict
and 145 non-strict MNE. The distinction between the strict and weak MNE matters, because once
a strict MNE is encountered, BR process stops. All weak MNE are transient, since no inertia is
assumed. This establishes that MNE are over-represented as the outcome of BR dynamics.

While looking at the 100,000th period as evidence of the limiting behavior is reasonable, an
analysis of the time series of the average cluster measure plus the 5th and 95th percentile for 10,000
runs (see Pancs and Vriend, 2003) suggests that we could illustrate this by observing a considerably
shorter spell of BR dynamics. In each case the degree of segregation stabilizes alreadywithin the first
few hundred periods. With both the flat and the p50 utility functions average segregation is not only
Fig. 4. a. BR, 100,000 periods, flat utility, 5×5 board. b. BR, 100,000 periods, p50 utility, 5×5 board. c. BR, 100,000
periods, p100 utility, 5×5 board.



Table 2
Final distributions, 5×5 boards

Random MNE BRdynamics (100,000 periods)

Flat p50 p100 Flat p50 p100

Num. Obs. 1,000,000 430,110 2880 387,954 1000 1000 1000

Clusters Average 7.82 4.30 3.61 4.14 2.10 2.04 4.99
5% 5 2 2 2 2 2 3
95% 11 7 8 7 3 2 8

Switch Average 0.53 0.35 0.31 0.43 0.21 0.23 0.51
5% 0.40 0.19 0.19 0.28 0.16 0.19 0.42
95% 0.65 0.52 0.52 0.60 0.27 0.28 0.62

Distance Average 1.02 1.25 1.31 1.10 1.58 1.50 1.00
5% 0.93 1.00 1.00 0.98 1.40 1.00 1.00
95% 1.15 1.65 1.60 1.33 1.80 1.65 1.05

Mix. dev. Average 0.18 0.23 0.23 0.18 0.34 0.29 0.14
5% 0.12 0.13 0.12 0.10 0.28 0.26 0.09
95% 0.25 0.36 0.29 0.26 0.40 0.32 0.18

Share Average 0.47 0.67 0.66 0.55 0.80 0.73 0.50
5% 0.38 0.56 0.50 0.43 0.73 0.70 0.42
95% 0.59 0.84 0.75 0.69 0.88 0.78 0.57

Ghetto Average 1.06 4.89 5.76 2.07 10.49 8.76 0.08
5% 0 1 1 0 8 6 0
95% 4 12 10 6 13 10 1
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complete but also rather quick. With the perfectly symmetric p100 utility function segregation is
substantial, but not extreme. Much of this segregation occurs relatively early on. In fact, initially the
graph looks similar to those for the flat and p50 utility functions. Eventually, the 95th percentile is at
8 clusters, near the average of 7.8 clusters for random allocations.

5.2. Extensions and summary of findings in 2D setup

In Pancs and Vriend (2003) we confirmed that the insights from a 5×5 lattice generalize to
larger lattices, analyzing the BR dynamics over 50 million periods for a setup with 4000 agents of
each type on a 100×100 board. Starting with just over 2000 clusters, integration initially declines
rapidly for each utility function. With the p100 function the number of clusters reaches about
1700, whereas with both the flat and p50 utility functions very strong segregation obtains almost
immediately, although there is some difference between the flat and the p50 utility functions
concerning the exact pattern of the final allocation.
Table 3
Number of MNE reached, 5×5 board

BR dynamics (100,000 periods)

Flat p50 p100

Observations 1000 1000 1000
Non-strict MNE reached 404 370 145
Strict MNE reached n.a. n.a. 854
Total MNE reached 404 370 999
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As explained in Section 3, we decided to focus our analysis of the 2D version of Schelling's
model on a board, with the players moving sequentially, and without inertia. In Pancs and Vriend
(2003), we establish the robustness of the obtained results by introducing inertia, simultaneous
moves, and a torus. For each of these three cases, the following two questions are addressed. First,
was the original assumption made by Schelling (1969, 1971a,b, 1978) on inertia, a preference for
nearby positions, and the specific way in which the order of moves was determined an essential
element of his model of segregation? Second, does the introduction of this variation concerning
the nature of the order of moves (sequential or simultaneous), the structure of the lattice (a board
or a torus) or the presence of inertia change our findings concerning the relative effect of the
utility functions with a strict preference for integration relative to Schelling's flat utility? In each
of the three cases the answer to both questions is negative (see Pancs and Vriend, 2003 for an
extensive analysis).

Our analysis of the 2D setup shows that Schelling's results are not only robust to a class of
alternative specifications, but they can also be strengthened enormously. The simple model
characterized by sequential moves (in a random order) in the absence of inertia and without a
preference for nearby positions exhibits rapid segregation, even with strict preferences for perfect
integration.

While the strict preference for perfect integration (as with the p50 function) leads to
approximately the same amount of segregation as the flat utility function, segregation for the p100
function is not as stark as for the flat and p50 utility functions. The essential difference is the
asymmetry of the latter two. With Schelling's flat utility function there are two separate effects of
this asymmetry. First, in case of indifference between a range of satisfactory positions, agents, on
average, would choose a relatively segregated option. This implies a ‘random drift’ away from
integration. Second, in the case of facing a choice between a small minority location and a large
majority location (i.e., positions with either x% unlike or x% like, where x is greater than the cut-
off point), agents favor the latter. With the p50 function, the flat part favoring the drift to
segregation has been removed, while the cut-off point is retained, whereas with the p100 function
the cut-off point has been removed as well. Since the p100 function does not induce substantial
segregation, this further helps to pin down the essential element explaining segregation in the 2D
model. It is the asymmetry related to the cut-off point, i.e., the fact that an agent favors his own
ghetto over an unlike ghetto, that is the crucial element in the 2D setup.

This finding is consistent with Zhang (2004), who extends the analysis of Young (1998) for the
1D setup to two dimensions. Both Zhang (2004) and Young (1998) consider a modification of
Schelling's one-dimensional model, with agents swapping locations, compensating payments
between moving players, and in the presence of noise (mistakes). They argue that complete
segregation is the only viable long-run outcome of the best-response dynamics if the agents'
preferences are biased in favor of their own type.

The concept of aMNEplays an important role in the analysis, as the BRdynamics often arrive at a
strict MNE or spend considerable time in weak MNE. Best-responses eliminate attractive loca-
tions,27 thus reducing incentives to deviate, and increasing chances to encounter a MNE. Further,
MNE tend to be clustered together, as it is easy to obtain one MNE from another by moving
indifferent agents. Consequently, notwithstanding their tiny share in the total number of possible
allocations, MNE states tend to be quite persistent. In as far as MNE are reached, the BR dynamics
27 This begs the question whether the chosen population density (40% of each type of agents) is critical to the behavior
of the system, as it influences the availability of choice locations. As the sensitivity analysis presented in Pancs and
Vriend (2003) shows, this is not the case.



Fig. 5. All possible allocations, 10+10 ring.
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appear to favor the most segregated among them. But, the attraction of MNE notwithstanding, it
would be wrong to conclude that BR dynamics would necessarily lead to an MNE.

6. Analysis of one-dimensional setup

We now turn to an analysis of the 1D version of Schelling's spatial proximity model. In this
section we present a number of sharp theoretical results on segregation in 1D. In addition, a
numerical analysis serves to highlight implications of alternative specifications of the model, and
to demonstrate that asymptotic theoretical results are attained in finite time.

As we saw above, in the 2D setup a considerable role was played by the MNE. Since the
existence of MNE cannot be ensured on a line, in most of what follows the 1D space is assumed to
be a ring.

6.1. 10+10 ring

For a start, and comparison with the 2D model, we look at a ring with ten agents of each type,
and a neighborhood formed by eight neighbors (four to the left, and four to the right). Fig. 5 shows
the distribution of the cluster measure for all 92,378 possible allocations.28 On average the 20
agents are located in 10.5 clusters.

The other benchmark we use is the set of MNE. There are 28 non-strict MNE for the flat utility
function, and 18 non-strict MNE for the two peaked (p50 and p100) and spiked utility functions.
These are exhaustively constructed. The MNE are identical for the two peaked (p50 and p100)
and spiked utility functions, forming a subset of the set of MNE for the flat utility function. There
are no strict MNE. That the number of MNE is much lower than in the 2D setup is, in part,
because there are fewer possible allocations (since there are no empty spaces), and, in part,
because the restrictions on equilibrium allocations are much more stringent. The formal analysis
of these observations is deferred until Section 6.2.

Fig. 6a and b show the distribution of the cluster measure for the MNE for each of the utility
functions considered. MNE with the flat utility range from complete segregation (2 clusters) to
perfect integration (20 clusters). This time, however, the intuition that the subset of MNE with the
peaked (p50) utility function is characterized by more integration than the set of MNE with the
28 Again, we neglect equivalent allocations obtained by swapping Os and Xs, so that 12
20
10

� �
¼ 92; 378.



Fig. 6. a. MNE, flat utility, 10+10 ring. b. MNE, peaked or spiked utility, 10+10 ring.
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flat utility function is correct. All completely segregated MNE of the flat utility function disappear
with the peaked and spiked utility functions.

Fig. 7a and b show the outcomes for 1000 observations of the BR sequences run for 100,000
periods. For each of the utility functions considered, the BR dynamics invariably lead to complete
segregation. As will be shown in Section 6.2 this is true for any initial allocation. For the f lat
utility function one could interpret this as the dynamics always selecting a segregated MNE.
However, with any of the peaked or spiked utility functions there is no MNE corresponding to this
outcome.29 Hence, Schelling's (1971a) observation that “(w)e could have surmised that our rules
of movement would lead to equilibria” (p. 151) is correct for the flat utility function, but it is not
generally true for these rules of movement. In particular, the conjecture is not true for the class of
peaked or spiked utility functions that we consider.

Since complete segregation is not a MNE with the peaked or spiked utility functions, it cannot
be a steady state. Nevertheless, the pattern of complete segregation is stable. With complete
segregation, and any of the peaked or spiked utility functions, only the agents at the border of their
own ghetto will enjoy the ‘bliss’ level of utility. Each time an agent can make a move, he will
locate himself exactly at such a boundary. Hence, almost all the time the agent whose turn has
come moves to a better location, but the configuration of the two ghettos as such is stable. These
ghettos only move around on the ring.

Table 4 summarizes the characterization of all possible allocations as well as those of the MNE
and the BR outcomes using various segregation measures. MNE for the peaked and spiked utility
functions are perfectly integrated according to the mix deviation, share and ghetto measures,30

while according to the cluster and distance measures they are as integrated as the average random
allocation. In each of the MNE with the peaked or spiked utility functions, all agents live in a 50–
50 neighborhood, reaching maximum utility. This implies that the adjustment dynamics are an
important concern from a social welfare point of view. In sharp contrast to the perfectly satis-
factory MNE, BR dynamics always lead to complete segregation, where only four agents reach
maximum utility.
29 As argued below, the state of complete segregation is almost the extreme opposite of any of the MNE. It is not true,
however, that complete segregation is a state with the lowest possible utility. For example, with the spiked utility
function, alternating clusters of size (k−1) would make all agents unsatisfied.
30 Although this cannot be read from the table, this applies in fact to each MNE for the peaked and spiked utility
functions.



Fig. 7. a. BR, 100,000 periods, flat utility, 10+10 ring. b. BR, 100,000 periods, peaked or spiked utility, 10+10 ring.
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In Pancs and Vriend (2003) we also analyzed how these final distributions tend to be ap-
proached over time. Starting from identical initial configurations for each of the utility functions,
the f lat utility function leads to complete segregation within 100 periods in 95% of the 10,000 runs,
whereas even with the peaked (p50 and p100) and spiked utility functions it takes just over 300
periods to reach complete segregation.

6.2. Formal analysis

This section demonstrates that the emergence of complete segregation with BR dynamics for
each of the utility functions considered holds for any ring size, and any neighborhood size. It is
assumed throughout that the number of Xs equals the number of Os.

Proposition A1 shows that in the long run complete segregation is the only possible outcome
of best-response dynamics with the spiked utility function. Corollary 1 explains that the same
applies to the f lat and peaked (p50 and p100) utility functions.
Table 4
Final distributions, 10+10 ring

All MNE BR dynamics (100,000 periods)

Flat Peaked or spiked Flat Peaked or spiked

Num. obs. 92,378 28 18 1000 1000

Clusters Average 10.53 7.14 10.00 2.00 2.00
5% 6 2 4 2 2
95% 14 12 12 2 2

Distance Average 1.10 1.82 1.16 3.00 3.00
5% 0.82 0.50 0.50 3.00 3.00
95% 1.51 3.00 1.80 3.00 3.00

Mix. dev. Average 0.11 0.09 0.00 0.25 0.25
5% 0.05 0.00 0.00 0.25 0.25
95% 0.18 0.25 0.00 0.25 0.25

Share Average 0.47 0.59 0.50 0.75 0.75
5% 0.43 0.50 0.50 0.75 0.75
95% 0.55 0.75 0.50 0.75 0.75

Ghetto Average 0.00 1.43 0.00 4.00 4.00
5% 0 0 0 4 4
95% 0 4 0 4 4
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Proposition A1. If a neighborhood on a circle of size 2m is defined as k neighbors to the left and
k neighbors to the right, then, if m is the number of each type, mNk, and the utility function is
spiked, then the process of best-responses has a unique recurrent class consisting of all
completely segregated states.

Discussion. The complete proof can be found in Appendix A (available on the Journal of Public
Economics website). Here is a sketch. We need to show that it is possible to reach complete
segregation from each initial configuration with positive probability, while all completely
segregated states constitute a single recurrent class. On a completely segregated ring, there are two
borders between ghettos. These borders are the only locations that offer positive utility. Hence, any
agent can only move to such a border, which does not affect the integrity of the ghettos. Thus, it is
sufficient to offer an algorithm showing just one possible path leading from each allocation to
complete segregation. In the proof this is done in two steps. A ‘seed’ is defined as a segment of a
ring formed by k agents of one type followed by k agents of the other type. If an allocation contains
a seed, then construction of complete segregation by means of positive probability moves is trivial,
as this seed can always grow by adding agents at the border inside the seed. If no seed is present
initially, we show that it will eventually emerge whatever the initial allocation. Hence, the limit
outcome of the BR dynamics is complete segregation.

Corollary 1. Proposition A1 also holds for the f lat and peaked (p50 and p100) utility functions
and for any utility function implying a strict preference for perfect integration.

Proof. Any best-response move according to the spiked utility function would also be a best-
response according to the other utility functions. This claim, in turn, relies on the fact that there
always exists a location offering the bliss level of utility. That it is indeed so is established in the
course of the proof of Proposition A1 (see Appendix A, available on the Journal of Public
Economics website). In addition, neither the flat nor any of the peaked utility functions allow an
escape from complete segregation. □

It can be shown that Proposition A1 holds even if the number of Xs does not equal the number
of Os. Then however, Corollary 1 does not apply.

We now turn to a characterization of the set of MNE for any ring size. For the flow of exposition
the number of a proposition is indicated in parentheses after a claim. Its formal statement and a
proof are in Appendix B (available on the Journal of Public Economics website).

On a ring there exist at least two positions where an agent can insert itself and enjoy perfect
integration (Lemma B1). This implies that for an allocation to be a MNE it is necessary and
sufficient that all agents enjoy the highest possible utility (Proposition B1), for otherwise someone
would be willing to migrate to one of the perfectly integrated locations. Thus MNE are the only
Pareto efficient outcomes. This is so for any of our utility specifications (including the flat utility
function), because they all assign the highest possible utility to living in a perfectly integrated
neighborhood. Thus the welfare implication drawn for the special case above on the basis of a
numerical analysis is a general feature of the 1D model. For all utility functions considered other
than the flat one, BR dynamics lead to a Pareto inferior outcome. Pareto efficiency of MNE
immediately explains why, with a strict preference for integration, according to the mix, share and
ghetto measures, equilibria were characterized as perfectly integrated.

The absence of strict equilibria is also a generic feature (Proposition B2), and it follows from
the multiplicity of bliss locations. This claim can also be inferred from the fact that complete
segregation is the only feasible long run outcome of BR dynamics. Otherwise the BR dynamics
could have become stuck at one of the strict MNE, which would have destroyed the result.
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In the 2D case, the set of MNE was biased towards segregation. The opposite is true in the 1D
case: in any MNE, no cluster can exceed k+1 agents in size with the peaked or spiked utility
functions, where k is the size of a neighborhood in either direction (Proposition B3). For a bigger
cluster size, agents in the middle of the cluster would enjoy less than the bliss level of utility. But
then, this cluster would not be a part of a MNE allocation, because an equilibrium implies that all
agents enjoy the highest possible utility. Thus the BR outcome has nothing to do with MNE but
for the flat function, when complete segregation happens to be an equilibrium.

The sets of MNE for the spiked and two peaked utility functions coincide (Proposition B4).
These are a subset of MNE with the flat utility function (Proposition B7). Extra equilibria in the
case of the flat function come from the absence of the upper bound on an admissible cluster size,
so that even complete segregation becomes an equilibrium. Logic similar to that of Proposition
B4 shows that BR moves for all utility specifications with a strict preference for integration are
identical.

The following properties allow to construct the set of MNE for the spiked (and hence peaked)
utility function. If the neighborhood size parameter k is odd, then, in and only in a MNE, agents at
all locations i and i+k+1 are of opposite types (Proposition B5). If k is even, then either agents i
and i+k+1 are of opposite types or agents i and i+k are of the same type and ai+ai+1+…+ai+k−2+
ai+k−1=0. There aj=1 if an agent in the jth position is X and aj=−1 otherwise (Proposition B6).
The above properties of MNE imply that many rings, depending on their length, will not have the
full set of potential MNE given k. The perfectly integrated alternatingMNE are robust to the length
of a ring.31

If k=4, as it is throughout this section, then all equilibria described in Proposition B6 can be
summarized by the following five patterns: XXXXXOOOOO, XXXOXOOOXO, XXOX
XOOXOO, XXOO and XO. These different patterns cannot be combined; only shifting and
concatenation of single patterns are allowed. Accounting for X/O symmetry, the above patterns
give rise to 5, 5, 5, 2 and 1MNE respectively. These 18 equilibria are the only ones possible for the
spiked and peaked utility functions, whatever the size of a ring, whereas the number of MNE
increases with the size of a ring for the flat utility function.32

6.3. Extensions and summary of findings in one-dimensional setup

The formal analysis in Section 6.2 allows us to characterize the set of MNE, and we also
know that complete segregation is the only possible long-run outcome. Proposition A1 does
not, however, say how soon this happens given the size of a ring, nor does it imply anything
about the relative speed of convergence for the various utility specifications. Therefore, in
Pancs and Vriend (2003) we also examined the dynamics on a ring with 100 agents of each
type (m=100) and a neighborhood defined by eight neighbors (k=4) for 50 million periods.
The random initial allocation, the same for each utility specification, has 110 clusters. After
50 million periods with the peaked or spiked utility function, a level of six clusters is reached,
whereas complete segregation occurs within 25 thousand periods with the flat utility function.
Moreover, while the flat utility function leads to a steady decline in the number of clusters, the
31 For instance, if we took an 11+11 ring instead of a 10+10 one, there would be only one MNE, characterized by
perfect integration, with 22 clusters, which would make the BR outcome of complete segregation even more striking.
32 For m=100 agents of each type and k=4, there are only 18 MNE for the peaked or spiked utility functions, but
60,575,676,973,999,910,976,213 for the flat utility function. The latter comprises 1.34×10−34% of all possible
allocations. The share declines rapidly in m: for m=10, 20, 30, 40 and 50 the corresponding shares are 0.03, 6·10−6,
1.5·10−9, 4·10−13 and 10−16%.
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degree of segregation is more erratic for the peaked and spiked preferences, and in particular
we sometimes see sudden outbursts of strong integration that disappear as quickly as they
emerge. Thus, the predicted limit result is obtained with the flat utility function, while the
peaked and spiked utility functions lead to remarkably extreme segregation in finite time. Strict
preferences for integration promote a consistent drive towards segregation, and when segre-
gation is reached, it is permanent.

In Pancs and Vriend (2003) we also consider BR dynamics with inertia, and BR dynamics on a
line (instead of a ring) to answer the same two questions as in Section 5. Are inertia and the line
essential for Schelling's (1969, 1971a) results? Would inertia or a line change our findings
concerning the peaked and spiked utility functions? Again, we find that the answer to each of
these questions is negative. The main change that comes with a line is the non-existence of MNE
for the peaked and spiked utility functions (see Pancs and Vriend, 2003), whereas the only MNE
with the flat utility function consists of complete segregation.

In 1D, the assumptions on the preferences can be extremely mild. In particular, the asymmetry
of the utility function (favoring a majority over a minority neighborhood) plays no role. A
sufficient (but not necessary) condition on the utility function to get complete segregation is that it
implies a strict preference for perfect integration. Given that, the utility function may have
multiple local peaks, and it may even describe a preference for living in anyminority neighborhood
rather than in any majority neighborhood.33 Particular specifications of the preferences,
however, matter when it comes to the speed of convergence to the limit result. The flat utility
function provides the strongest impetus towards quick segregation compared to the family of
peaked functions. But, in contrast to the 2D model, in its 1D counterpart, myopic equilibria do
not act as attractors in the course of the BR dynamics.

7. Conclusion

This paper establishes robustness of Schelling's spatial proximity models of segregation. This
robustness allowed us to abstract from superfluous details on the order of moves, and assume away
inertia and a bias in favor of nearby positions, to gain a better understanding of the essence of the
spatial proximity model. As it turns out, mild proximity preferences plus externalities of moving
agents are sufficient to generate segregation, without needing any further proximity concerns such
as, for example, those concerning some information or moving technology. What is more, focusing
on the preferences, we found that they can be made much more extreme in favor of integration, with
the model still explaining segregation.

Our equilibrium analysis suggests that we can think of segregation in the current model as a
coordination issue. We observe a multiplicity of equilibria and, as in the 2D model, some are
more segregated than others. The coordination problem, then, consists of not only coordinating
on an equilibrium, but doing so on one of the best equilibria. In the 1D model with the spiked or
peaked utility functions, we see that all MNE are Pareto optimal. Hence, the problem there is
one of coordinating on one of those equilibria. Our analysis shows that one should not
expect myopic BR dynamics to solve these coordination problems. It may appear that had the
agents been less myopic in the 1D model, coordination on one of the integrated equilibria
would have been more likely. However, it is not clear that the coordination problem is related to
the fact that our equilibria are myopic, in the sense that they are defined in terms of locations
33 An example would be the horizontal mirror image of the peaked p50 utility function. Such features seem relevant
from a biological perspective, where species might want to avoid living with too many like competitors.
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rather than strategies. Solving for the Nash equilibria of the truly dynamic game (i.e., in
strategies rather than locations) is beyond the scope of this paper, but one would expect in a
dynamic game multiplicity of equilibria to be even more of an issue, and most likely some of
those equilibria will be more integrated than others.34 Hence, one would expect coordination to
be even more of a problem when considering dynamic strategies.

What is it about the preferences that leads to the striking outcome of segregation? The answer
is different in the 2D and 1D setups. In the 2D model, the dynamics are characterized by a quick
disappearance of ideal locations, and agents having to move to less satisfactory ones. Related to
this, the key element of the 2D model driving the segregation is the asymmetry in the utility
function, i.e., the fact that agents favor a large-majority status over a small-minority status. In the
1D model, however, perfectly integrated locations remain available for choice indefinitely, with
newly arriving agents merely pushing incumbents away from such locations. As a result,
segregation occurs even if the individuals strictly prefer perfect integration with no bias
whatsoever in favor of the agent's own type. In the 1D case complete segregation is the unique
long-term outcome. It is the arrangement of the space and the definition of moves that are
responsible for the difference between 1D and 2D models.35 Consequently, the two spatial
proximity models proposed by Schelling offer two very different explanations for segregation.

What are the welfare and policy implications of these insights? First, we find that the welfare
effect of educating people to have preferences for integration might be adverse. With strict
preferences for integration, the segregated outcome will be unsatisfying for the majority of people.
This is an adverse welfare effect, as the mere presence of unsatisfied people implies by itself a
welfare issue, in particular when more efficiently coordinated equilibria do exist. In contrast, with
the flat utility function, as used in Schelling's original setup, this welfare issue does not arise, as
people do not mind being segregated as long as they live in the right ghetto. Hence, without a strict
preference for integration there are far fewer relatively unsatisfied people, even though most may
be segregated.

Second, suppose a benevolent planner has some freedom in affecting agents' preferences and
aims to maximize integration. What preferences would he like his citizens to have? Our analysis,
using measures of integration that are independent of the utility functions assumed, raises some
doubts (within the limitations of the model analyzed here) as to what the education of preferences
for integration could achieve.36

Next, presuming that there is a social welfare case for integration (independent of the
specification of the individual preferences), could a migration subsidy or tax system prevent
segregation and implement integration? Although we do not explicitly analyze this issue, our
analysis suggests that a system consisting of rewards for integrating moves or taxation of seg-
regating moves might not work if it merely emulates the incentive structure represented by the
various utility functions analyzed in our paper.
34 For example, in the 1Dmodel, suppose that we allow for dynamic strategies, and that all other agents choose the dynamic
strategy consisting of behavingmyopically just as in ourBRdynamics.Whatwould be a best-response (in dynamic strategies)?
Without providing a full analysis, it would seem that one cannot do better than adhering to the same myopic strategy. In other
words, when we would consider dynamic strategies, even in the 1D model there seems to be a Nash equilibrium that is
completely segregated.
35 To check that it is not the dimensionality as such that is the essential difference between the 1D and 2D models, we
considered the following one-dimensional version of the 2D model. Take a 1×25 board with ten agents of each type and
five empty locations, and connect the first and the last cell of the board. BR dynamics in this variant lead to segregation
only for the flat and the p50 utility function, just as for the other 2D models analyzed.
36 As one referee observed, not all preferences would lead to outcomes that are contrary to the underlying tastes of the
agents. Indeed, we have verified that preferences for segregation do not facilitate integration. See also Sakoda (1971).
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Another difficulty with integration is that it implies almost by definition a rather special pattern.
This makes it hard not only to achieve integration (either in a decentralized or a centralized way),
but also renders it unstable with respect to minor disturbances. Hence, one could entertain as-
similation as a viable alternative to integration (see, e.g., Baldwin and Rozenberg, 2004).

Finally, in the spatial proximity model, the two groups differ in just one characteristic. Instead
suppose there are many more characteristics, that each characteristic has an equal weight in the
utility function of individuals, and that these characteristics are not too correlated with each other.
Then we conjecture that one should not expect segregation. A possible integration policy would
then stress the multidimensionality of multiculturalism instead of reducing it to one factor such
as ethnicity or religion (as happens, e.g., with most forms and questionnaires due to Equal
Opportunity legislation).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at
doi:10.1016/j.jpubeco.2006.03.008.
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Appendix A.  Proof of complete segregation on a ring
Utility is one if the number of O-neighbors equals the number of X-neighbors and zero

otherwise. Best response is assumed without inertia. Only dynamics on a circle is considered here. For
these proofs it is assumed that the number of Xs equals the number of Os equals m.

To prove that complete segregation is the limit outcome of the best response dynamics it
should be possible to reach complete segregation from each initial configuration with positive
probability. This requires the set of all completely segregated outcomes to form a unique recurrent
class while all other states be transient.

On a completely segregated ring, there are two borders between ghettos. These borders are the
only locations that offer positive utility. Hence, any agent can only move to such a border, which does
not affect the integrity of the ghettos. Thus, only transience of the remaining states needs to be proved.
To prove this, it is sufficient to offer an algorithm showing just one possible path leading from each
allocation to complete segregation.

In the proofs below this is done in two steps. A ‘seed’ is discovered or constructed through
positive probability moves (PPMs) and then complete segregation is built from this seed. PPMs can
not only be used to insert an agent into a position with a utility of one, but also to drop out an agent
from a position with a utility of zero, provided the existence of an appropriate destination is assured.
PPMs with source and destination within a segment can also be made.

The following notation will be used:
· 2k is the size of a neighborhood: k neighbors to the left and to the right.
· 2m is the number of agents: m of each type.
· { }nX  is a segment consisting of n Xs.
· Square brackets […] are used to highlight a seed.
· { } nl ,OX, is any segment consisting of l Xs and n Os in any arbitrary order.1

LEMMA A1. Any segment of the type { } { } lklllk −− ,, O,XXO,X , where 2k is the size of a neighborhood

and kl <<0 , can be transformed into { } { } { } lkkl −+ OXO 1  by means of positive probability moves.

PROOF. The two braces of the given segment contain k Xs and k Os. The agent in the central position
neighbors them all and thus enjoys the highest utility. It is possible to move successively every X from
each brace into the central position and such move will be a positive probability move. For instance,

{ } { } lklllk −− ,, O,XXO,X   { } { } { } lklllk −−− ,2,1 O,XXO,X .

The central position will always enjoy the highest utility, because whenever X is taken from the left
brace the former central X shifts to the left and enters the brace from the right end. The removed X is

                                                          
1 For instance, { } 3,2OX,  could be XOOOX, as well as OOXOX or OXXOO.
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always put in the central position. Similarly, when X is taken from the right brace the former central X
shifts to the right and enters the right brace, while the removed X takes its place. □

LEMMA A2. On any circle of size 2m, where m is the number of each type, and km ≥ , where k is the
size of k+k neighborhood, there exist at least two perfectly integrated positions between two
neighboring agents.

PROOF. Define iσ  as the number of Xs, which a segment of length 2k contains, where 2k is the size of
a neighborhood and i is the index of a position between two consecutive agents in the middle of the
segment. It follows that { }ki 2...,,1,0∈σ  and { }mi 2...,,2,1∈ . Position i provides positive utility if
and only if ki =σ . If we go through all such possible segments once, then each agent will be covered
exactly 2k times – not more because it is given that km ≥ . Therefore

km
m

i
i 2

2

1
=∑

=

σ . (*)

The mapping σ has a property for all i that

11 ≤−=Δ +iii σσσ , (**)

where 012 σσ =+m . If segment i is shifted by one position, it is possible that

• one X enters the segment, one X leaves, then 0=Δ iσ

• one X enters, none leave, then 1=Δ iσ

• none enter, none leave, then 0=Δ iσ

• none enter, one leaves, then 1=Δ iσ .

Two cases are possible:
a) .: ki i >∃ σ  Then for (*) to hold it follows that kj j <∃ σ: . Without loss of generality, assume that

ji < . From (**) it follows that kl l =∃
1

:1 σ  and kl l =∃
2

:2 σ  such that 21 ljli <<< .

b) kjki ji <¬∃⇒>¬∃ σσ :: . Consequently ki i =∀ σ: .
Thus there always exist at least two locations that can provide positive utility. □

LEMMA A3. Any segment of the type { } { } { } lkkl −+ OXO 1 , where 2k is the size of a neighborhood,
kl <<0 , and the number of each type on the circle is m>k, can be transformed into a seed

{ } { }[ ]kk XO  by means of positive probability moves.

PROOF. The proof is done by induction.
Inductive base: segment { } { } OXO 11 +− kk  can be preceded by either O or X. The former case yields a
seed { } { }[ ]XOXO kk .
Consider the latter case of { } { } OXOX 11 +− kk . By Lemma A2 there exist at least two positions with
positive utility. At the same time between any of the two Xs, which are inside the fragment { } 1X +k  and
immediately to the left of { } 1X +k : k>σ . Consequently, k=σ  in at least two places outside this
fragment.
a) If k=σ  immediately to the right of { } 1X +k , then we have a seed.
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b) If k=σ  anywhere enclosed between horizontal bars { } { } OXOX 11 +− kk  (bars included), then by

PPM we insert there O and obtain a seed { } { }[ ]XOXOX kk .
c) If k=σ  is outside the segment { } { } OXOX 11 +− kk , then the following action will be a positive
probability move: { } { } OXXOX 1 kk−   { } { } OXOX 1 kk− . Since the destination is outside the segment,
the moved X could not have constituted a part of its neighborhood. Finally, { } { } OXOX 1 kk−  
{ } { } OXOXOX 11 −− kk   { } { }[ ]OXOX kk .

Inductive step: assume that { } { } { } lkkl −+ OXO 1  (*) can be transformed into a seed. It needs to be shown
that segment { } { } { } 111 OXO +−+− lkkl  (**) can also be transformed into a seed. The segment (**) can be
preceded by either O or X. In the former case we get: { } { } { } OOXO 1 lkkl −+ . The obtained segment
contains (*) and therefore can also be transformed into a seed by assumption.

Consider the latter case when X precedes (**): { } { } { } 111 OXOX +−+− lkkl . As with the inductive step, we
know that inside { } 1X +k  and immediately to the left of { } 1X +k  we have k>σ .
a) If k=σ  immediately to the right of { } 1X +k , then we already have a seed.

b) If k=σ  anywhere enclosed between horizontal bars { } { } { } 111 OXOX +−+− lkkl  (bars included), then

by PPM move there O from the right hand side so that the resulting segment { } { } { } lkkl −+ OXOX 1

contains (*).
c) If k=σ  anywhere within the rightmost braces { }O , then insert there the free O. Three cases are
possible:

i) A seed has formed: { } { } { }[ ]kkl OXXOX 1− .
ii) If in the rightmost braces { }O  there still is a position with k=σ , then repeat c), i.e., insert
there the O, and see what happens.
iii) If there is no position in the rightmost { }O  with k=σ , then the following is possible:
{ } { } { } 111 OXOX +−+− lkkl = { } { } { } { } 11 OXXXOX +−−− lkllkl   { } { } { } { } 11 OXXOX +−−− lkllkl  
{ } { } { } { } 1111 OXOXOX +−−+−− lkllkl   { } { } { } { } 111 OXOXO +−+−− lkllkl  

{ } { } { } { } 111 OXOXO +−+−− lkllkl   { } { } { } { } 1211 OXOXO +−+−−− lkllkl   … 
{ } { } { } 11 OXXOO +−− lkkl   { } { } { } OOXO 1 lkkl −+ .
The obtained segment contains (*) and therefore can also be transformed into a seed. □

PROPOSITION A1. If a neighborhood on a circle of size 2m is defined as k neighbors to the left and k
neighbors to the right, then, if m is the number of each type, km > , and the utility function is spiked,
then the process of best-responses has a unique recurrent class consisting of all completely segregated
states.

PROOF. If an allocation contains a seed, then construction of complete segregation by means of PPMs
is trivial. Otherwise construct a seed. If no agent enjoys positive utility, some agent will go to a
location that ensures one (it exists by Lemma B1). Now at least one agent has positive utility. Take
one such agent and consider all possible configurations of his neighborhood. Without loss of
generality we can assume that X is such an agent. Since its utility is positive, its neighborhood is the
segment { } { } lklllk −− ,, O,XXO,X . By Lemma A1 this can be transformed into { } { } { } lkkl −+ OXO 1  and

then by Lemma A3 into { } { }[ ]kk XO  with positive probability. Thus a seed can always be constructed
and complete segregation then built. On a completely segregated ring, there are two borders between
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ghettos. These borders are the only locations that offer positive utility. Hence, any agent can only
move to such a border, which does not affect the integrity of the ghettos. □

Appendix B.  On MNE on a ring
Assume a ring with an equal number of each type of agents. Now take any one agent out, say,

without loss of generality, take agent X out. Then the following lemma applies.

LEMMA B1. On any circle of size 2m–1, where m and m–1 is the number of each type, and km > ,
where k is the size of a k+k neighborhood, there exist at least two perfectly integrated positions
between two neighboring agents.

PROOF. Borrow the definition of mapping iσ  and its properties from Lemma A2. Without loss of
generality assume that there are m Os and m–1 Xs. The following equality will hold:

( )12
12

1
−=∑

−

=

mk
m

i
iσ (*)

The proof proceeds by contradiction. Assume there exist no two i, for which ki =σ .
From (*) it follows that ki i <∃ σ:  for otherwise

( ) ( )1212
12

1
−>−>∑

−

=

mkmk
m

i
iσ ,

so that (*) would not hold. Since for some i ki <σ  and for no two i ki =σ , then ki i >¬∃ σ: ,
because iσ  can only change by increments of 1. Hence, for at most one i ki =σ , while for the
remaining ones ki <σ . Consequently,

( )( ) kkm
m

i
i +−−≤∑

−

=

122
12

1
σ .

The necessary condition for (*) to be satisfied is

( )( ) ( )12122 −≥+−− mkkkm  or ( ) 22+≤ km .

This, however, contradicts the premise of the lemma requiring km > . Therefore there exist at least
two i, for which ki =σ . □

PROPOSITION B1. Suppose, on a circle, there are m agents of each type, where km > , and the utility
function is maximized at a perfectly integrated neighborhood (e.g. the utility function may be spiked,
peaked or flat). Then an allocation is an MNE, if and only if all agents enjoy the maximal possible
utility.

PROOF. The proof proceeds by contradiction. Suppose an allocation is an MNE, and there is an agent
who enjoys less than maximal possible utility. Remove this agent. Lemma B1 applies: there will
always exist a perfectly integrated location, where the agent can go to obtain the maximal utility.
Hence, an allocation cannot be an MNE. Thus, in an MNE, all agents enjoy the maximal utility.
Further, whenever all agents enjoy the maximal utility, no agent will have an incentive to move
elsewhere, so such an allocation is an MNE. □

PROPOSITION B2. Suppose, on a circle, there are m agents of each type, where km > , and the utility
function is maximized at a perfectly integrated neighborhood. Then there exist no strict MNE.
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PROOF. The proof proceeds by contradiction. Assume a strict MNE exists, and pick any agent. Take it
out. Lemma B1 applies: on the remainder of the ring, there will always be at least two perfectly
integrated locations which ensure maximal possible utility. One of these may be the position the agent
occupied, but there will be at least one more perfectly integrated position elsewhere. Hence, there is
always a choice to move elsewhere to a place with maximal possible utility. This contradicts the
definition of a strict MNE. Therefore, there are no strict MNE. □

PROPOSITION B3. Suppose, on a circle, there are m agents of each type, where km > , and the utility
function is maximized at a perfectly integrated neighborhood. Then, in an MNE, there can be no
cluster larger than k+1, where k is the size of a neighborhood parameter.

PROOF. A cluster bigger than k+1 requires that all its agents in the cluster, except possibly those on the
two edges of the cluster, have less than maximal possible utility. But, by Proposition B1, this
contradicts the assumption that the cluster is a part of a MNE allocation. Hence, no cluster can be
larger than k+1. □

PROPOSITION B4. The sets of MNE for all utility functions, which attain their maximum at and only at
a perfectly integrated neighborhood (e.g. spiked and peaked utility functions), coincide.

PROOF. For a circle, Lemma B1 guarantees (provided km > ) an opportunity for any agent to migrate
to a perfectly integrated location. Since the considered utility functions have peaks at perfect
integration, it is impossible for any agent in an MNE not to enjoy a perfectly integrated neighborhood.
By Proposition B1, this is a necessary and sufficient condition for an allocation to be an MNE. Hence,
the sets of MNE are the same for all utility functions uniquely maximized at perfect integration. □

PROPOSITION B5. Suppose the utility function attains its maximum at and only at a perfectly integrated
neighborhood, and let the neighborhood size parameter k be odd. Then an allocation is an MNE, if and
only if agents i and i+k+1 for all i are of opposite types.

PROOF. The proof is constructive. Given an arbitrary segment of 2k+1 agents kk aaaa 210 ...... , with the
central agent ka  enjoying maximal utility, it is sometimes possible to continue the string adding
agents 12 +ka  onwards so that agents 1+ka  onwards also enjoy maximal utility. Call this a
complementary step procedure. The initial segments, for which it is possible to continue the process
until the repetition starts, are compatible with maximal utility for all agents. Since maximal utility for
every agent is a necessary and sufficient condition for an allocation to be a MNE (by Proposition B1),
this procedure will allow to construct all patterns, which can serve to build a MNE.

The complementary step procedure will necessarily reproduce the initial segment. It is
impossible to produce a string of an infinite length for which all segments consisting of 2k+1 agents
would be unique, because the number of such segments is finite. Thus the string obtained by means of
this procedure can be joined in a circle. This ensures that not only agents ka  onwards enjoy maximal
utility, but also that agents from 0a  through 1−ka  enjoy maximal utility by construction.2

Let 1−=ia  if location i is occupied by X and 1=ia  otherwise. Then the recursive formula used in
the complementary step procedure to add agent i given the preceding segment is

kikikii aaaa −−−−− +−= 112 . (1)

                                                          
2 It is also crucial that a complementary step procedure is uniquely defined, so it is possible to ‘scroll back’ to the
initial allocation. For assume the sequence does eventually repeat, but not from the initial segment. Then it
would be possible from any place on the formed circle, which excludes the initial segment, to return both to the
initial segment and never return to it. This is a contradiction. Hence repetition starts from the initial segment.
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The formula ensures that if in segment iikikikiki aaaaaa 11212 ...... −−−−−−−  agent 1−−kia  enjoyed maximal
utility, then kia −  will also enjoy maximal utility. It is undefined for 112 −−−−− −== kikiki aaa .

To prove necessity, suppose the contrary: 01: α==∃ ++krr aar . Without the loss of generality, set
r=0. Applying (1) yields kkkk aaaaa −=+−= ++ 01012 2α . Hence, 012 α==+ kk aa . Applying (1)
again gives 12213 ++ +−= kkkk aaaa , so that 0213 α==+ kk aa . Reiteratively using (1), the following
obtains:

01 α== +zkzk aa , (2)

where Ζ∈z . Apply (1) once again: ( ) ( ) ( )kzkzkzzk aaaa 11112 −−−−− +−= . Now by (2) it follows that

( ) ( ) 1112 −−−− = kzkz aa  or, equivalently, 11 α=−zka . (3)

Next, ( ) ( ) ( ) 1121221 −−−−−−− +−= kzkzkzzk aaaa , which gives 22 α=−zka , and in general

llzka α=− , (4)

where 21 −≤≤ kl . Combining (2), (3) and (4) ensures that a string consists of the following
repeated segments:

001232 ... αααααα −− kk

Take a fragment of the string as given below

[ ] 0123200123200 ...... ααααααααααααα −−−− kkkk .

The condition for the bracketed agent to enjoy maximal utility, so that the fragment could be a part of
an MNE, is (having divided through by 2)

0...2 23210 =+++++ −− kk ααααα . (5)

Recall that k is odd and 1=iα . Hence condition (5) can never be satisfied and

1: ++−=∀ kii aai . (6)

To prove sufficiency consider any segment containing a full neighborhood (the index of the first
element is normalized to 0)

kkk aaaaa 21210 ...... −

The condition for the middle agent to enjoy the maximal possible utility is

0...... 2121110 =+++++++ −+− kkkk aaaaaa (7)

Substitution of (6) into (7) readily shows that (7) is an identity. Hence if (6) holds, then all agents have
positive utility and an allocation is a MNE. □

PROPOSITION B6. Suppose the utility function attains its maximum at and only at a perfectly integrated
neighborhood, and let the neighborhood size parameter k be even. Then an allocation is an MNE, if
and only if either (i) agents i and i+k+1 are of opposite types or (ii) agents i and i+k are of the same
type and 0... 121 =++++ −+−++ kikiii aaaa  for all i.

PROOF. The proof draws heavily on the proof of Proposition B5. In the necessary part of the proof of
Proposition B5 it has been demonstrated that if an allocation is an MNE, then either agents i and i+k+1
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are of opposite types or agents i and i+k are of the same type. Moreover if agents i and i+k are of the
same type, then condition (5) holds, and in any pattern there is at least one pair of agents of the same
type (of type 0α ). The only pattern with all adjacent agents of different types is a string of alternating
X and O. This MNE falls under type (i). Condition (5) is equivalent to one in (ii), where two agents of
the same type are gathered in one term. Condition (5) can now be satisfied, because k is even.

To prove sufficiency, consider any segment containing a full neighborhood (the index of the
first element is normalized to 0) kkk aaaaa 21210 ...... − . The condition for the middle agent to enjoy the
maximal possible utility is (7). If a pattern is of type (i), then substitution of (6) into (7) turns it into
identity. Hence if (6) holds, then all agents have positive utility and an allocation is a MNE. If a
pattern is of type (ii), then the fact that kii aa +=  and the condition in (ii) ensures that (7) and (5) hold,
so that the allocation is an MNE. □

LEMMA B2. In a MNE with the flat utility function adjacent agents of different type enjoy perfect
integration.

PROOF. Consider two neighboring agents: X’ and O’, each of which prefers at least k neighbors of his
own type. The neighborhood of X’ is different from the neighborhood of O’ in that it contains two
more agents, one of which is O’, and omits two agents, one of which is X’. Both X’ and O’ can be
satisfied only if the neighborhood of O’ contains exactly k Os, then it is possible to ensure k Xs for X’
by stipulating that an extra agent is of X type and an omitted agent is of O type. Thus, adjacent agents
of different type can only have perfectly integrated neighborhoods.

Let ai = -1 if location i is occupied by X and ai = 1 otherwise, then

02'OX' ≤′′−′++Ω=Ω aa  and 0O' ≥Ω , (*)

where X'Ω  and O'Ω  are the sum of agents in the neighborhood of X’ and O’ respectively, a′  and a ′′
are additional and excluded agents. Both inequalities are satisfied only if O'X' Ω=Ω .

So far it has been implicitly assumed that we are either operating on a circle or considering
agents on a line who are sufficiently remote from edges. The difference the possibility of edges
introduces is that either a′  or a ′′  can turn into zero. If X’ is closer to the border than O’ then a′  might
turn into zero, otherwise a ′′  might be zero. If this is the case, then it is never possible to satisfy (*):
both X’ and O’ cannot be satisfied simultaneously. Hence, the allocation is not a MNE. □

PROPOSITION B7. The set of all MNE on a circle with a flat utility function and the neighborhood size
k ( km > ) contains the set of all MNE on a circle with a peaked utility function for corresponding k,
plus all possible combinations of clusters, each populated by at least k+1 agents with at least one
cluster exceeding k+1 agents. For 4≤k  there are no other MNE than these.

PROOF. In any MNE with the spiked utility function all agents enjoy maximum possible utility. With
the flat utility function, all agents would continue to enjoy the highest possible utility for each of these
allocations. Hence all MNE with the spiked function are also MNE with the flat function. Further, if
all clusters are k+1 or larger, than agents on edges enjoy perfectly integrated neighborhoods, while the
rest are surrounded by a majority of their own type. Hence, no one has an incentive to move and such
an allocation is a MNE. It remains to be shown that there are no other MNE.

In MNE, clusters of size k+1 cannot co-exist with smaller clusters. Assume the opposite. Consider any
cluster of size at least k+1, let it be X-type, which neighbors a cluster of k agents or less (O-type):

{ } { } ...XOOX... 1+≥< kk
&

Then the agent marked with a dot will be in a minority, and hence willing to go to an allocation with
higher utility, which is known to exist. It needs to be demonstrated, that there is no MNE with all
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cluster sizes less or equal to k (for 4≤k ) where some agents would not enjoy a perfectly integrated
neighborhood.

If k=1 then a single agent forming a cluster of size 1 is always dissatisfied. If k=2, then any
agent from a cluster sized 1 or 2, by Lemma B2, in MNE would enjoy a perfectly integrated
neighborhood, if such a MNE exists. If k=3, again, by Lemma B2, we should consider only clusters of
size 3. Such a cluster needs to be enveloped by two clusters of the opposite type comprising at least 4
agents each for bordering agents of the opposite type to be satisfied. Hence, no agent in cluster of size
3 will be satisfied, and this allocation will not be a MNE.

If k=4, then, by Lemma B2, we can consider only central agents in clusters of size 3 and 4. For
the cluster of size 3, it is impossible that the central agent (e.g., O) is in a majority while the bordering
agents of the opposite type (Xs) are satisfied:

…XXXOXOOOXOOX…

The cluster of size 4, trivially, will be surrounded by clusters of the opposite type of 5 agents or more
for the border agents of the opposite type to be satisfied. This renders central agents dissatisfied:

…XXXXXOOOOXXXXX…

Thus it is impossible to construct a MNE with cluster sizes not exceeding k for ( 4≤k ), such that
there exists an agent who is in a majority. □


	Schelling's spatial proximity model of segregation revisited
	Introduction
	Segregation as public economic policy issue
	Schelling's spatial proximity model
	Recapitulation of Schelling (1969, 1971a,b, 1978)
	Schelling's model revisited

	Analytical tools and benchmark allocations
	Benchmark allocations
	Segregation measures
	Clusters
	Switch rate
	Distance
	Mix deviation
	Share
	Ghetto rate


	Analysis of two-dimensional setup
	5×5 board
	Extensions and summary of findings in 2D setup

	Analysis of one-dimensional setup
	10+10 ring
	Formal analysis
	Discussion

	Extensions and summary of findings in one-dimensional setup

	Conclusion
	Supplementary data
	References


