

Dr Ana JORGE SOBRIDO

Senior Lecturer in Energy Materials UKRI Future Leaders Fellow <u>a.sobrido@qmul.ac.uk</u> School of Engineering and Materials Science Queen Mary University of London

 Global warming, air quality, sustainability, energy security – an increase in installed renewable and clean sources of electricity are vital to solve our energy problems and battle climate change

Almost 75% of new electricity capacity was renewable in 2019

New capacity installed eash year (gigawatts)

Guardian graphic | Source: Irena

Storage

Context 01 uture

Redox Flow Battery

National Grid: Live Status (4:15pm 20/10/2020)

The National Grid is Great Britain's electricity transmission network, distributing the electrical power generated in England, Scotland, and Wales, and transferring energy between Great Britain and Ireland, France, and the Netherlands.

35.2Gw demand	30.5% fossil fuels		24.3% other energy	
Generation:	Coal	0.00GW 0.0%	Pumped storage 🚺	0.00GW 0.0%
	Oil	0.00GW 0.0%	Nuclear	6.30GW 17.9%
	Gas (open cycle) 🚺	0.00GW 0.0%	Biomass	2.11GW 6.0%
	Gas (combined cycle) 🚺	10.72GW 30.5%	Other	0.14GW 0.4%
	33.6% renewable energy 11.6% interconnectors			
	Solar photovoltaic	1.56GW 4.4%	HVDC Moyle	0.08GW 0.2%
	Wind	9.74GW 27.7%	HVDC Cross-Channel	1.83GW 5.2%
	Hydroelectric	0.54GW 1.5%	BritNed 🚺	0.99GW 2.8%
Note: this pie chart shows generation only, and excludes			East-West Interconnector	0.15GW 0.4%
interconnectors			Nemo Link 🕦	1.02GW 2.9%

Electricity storage is widely regarded to be the single most important technological breakthrough likely to happen over the period to 2030 and a complete 'game changer' in the way that the power system operates

Energy UK report 2016

Leaders Fellowships

Increase sustainability and improve performance

SEMS

Increase sustainability and improve performance

Biomass-derived precursors and Electrospinning

Biomass-derived precursors and Electrospinning

Biomass-derived precursors and Electrospinning

Shaping the next generation of materials for grid-scale energy storage

	Redox Flow Battery	Li-ion battery	
Power/Energy	Independent Power-Energy Capacity	Energy and power Related	
Electrolyte	 Non-toxic, non-flammable Completely recycle Expensive 	 Flammable Non-recyclable Low-cost 	
Life Cycle	10,000 – 25,000	10,000	
Round-trip efficiency	60-80%	> 99%	
Initial Capital Cost	1000 - 500 \$/kWh *	400 \$/kWh	
LCOS	LOW	HIGH	

- Key timing for innovation in grid-scale energy storage technologies
- Flow batteries *versus* Li-ion batteries
- Materials with targeted properties for flow batteries

Fellowships

Thanks! Any questions?

Dr Ana JORGE SOBRIDO

Senior Lecturer in Energy Materials UKRI Future Leaders Fellow <u>a.sobrido@qmul.ac.uk</u> School of Engineering and Materials Science Queen Mary University of London

