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Abstract

We propose a methodology for estimating and testing beta-pricing models when a
large number of assets is available for investment but the number of time-series obser-
vations is fixed. We first consider the case of correctly specified models with constant
risk premia, and then extend our framework to deal with time-varying risk premia,
potentially misspecified models, firm characteristics, and unbalanced panels. We show
that our large cross-sectional framework poses a serious challenge to common empirical
findings regarding the validity of beta-pricing models. Firm characteristics are found to
explain a much larger proportion of variation in estimated expected returns than betas.
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Traditional econometric methodologies for estimating risk premia and testing beta-pricing models

hinge on a large time-series sample size, T, and a small number of securities, N. At the same time,

the thousands of stocks that are traded on a daily basis in financial markets provide a rich investment

universe and an interesting laboratory for risk premia and cost of capital determination.1 Moreover,

although we have approximately a hundred years of US equity data, much shorter time series are

typically used in empirical work to mitigate concerns of structural breaks and to bypass the difficult

issue of modelling explicitly the time variation in risk premia. Finally, when considering non-US

financial markets, only short time series are typically available.2 Importantly, when N is large and

T is small, the asymptotic distribution of any traditional risk premium estimator provides a poor

approximation to its finite-sample distribution, thus rendering the statistical inference problematic.3

The main contribution of this paper is that it provides a methodology built on the large-N

estimator of Shanken (1992), which allows us to perform valid inference on risk premia and assess

the validity of the beta-pricing relation when N is large and T is fixed, possibly very small.4

Our novel methods are first illustrated for correctly specified models with constant risk premia

and then extended to deal with time variation in risk premia, potential model misspecification,

firm characteristics in the risk-return relation, and unbalanced panels. We also demonstrate that

methodologies specifically designed for a large T and fixed N environment are no longer applicable

when a large number of assets is used. Proposition 3 below demonstrates the perils of inadvertently

using the Fama and MacBeth (1973) t-ratios with the Shanken (1992) correction in our large N

setting.

As emphasized by Shanken (1992), when T is fixed, one cannot reasonably hope for a consistent

estimate of the traditional ex ante risk premium. For this reason, we focus on the ex post risk

premia, which equal the ex ante risk premia plus the unexpected factor outcomes.5

1For example, one can download the returns on 18,474 US stocks for December 2013 from the Center for Research
in Security Prices (CRSP), half of which are actively traded.

2For example, Table 1 in Hou et al. (2011) shows that, at most, only about thirty years of equity return data is
available for emerging economies in Latin America, Europe-Middle East-Africa, and Asia-Pacific regions.

3 The alternative approach of increasing the time-series frequency, although appealing, can lead to complications
and is not always implementable. Potential problems with this approach include non-synchronous trading and market
microstructure noise. Furthermore, for models that include non-traded (macroeconomic) risk factors, high-frequency
data is not available.

4Our methodology offers an alternative to the common practice of employing a relatively small number of portfolios
for the purpose of estimating and testing beta-pricing models. Although the use of portfolios is typically motivated
by the attempt of reducing data noisiness, it can also cause loss of information and lead to misleading inference due
to data aggregation. (See, for example, Brennan et al. (1998), Berk (2002), and Ang et al. (2018), among others.)

5The ex post risk premium is a parameter with several attractive properties. It is unbiased for the ex ante risk
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We start by considering the baseline case of a correctly specified beta-pricing model with con-

stant risk premia when a balanced panel of test asset returns is available. We show that the

estimator of Shanken (1992) is free of any pre-testing biases and that no data has to be sacri-

ficed for the preliminary estimation of the bias. (See Proposition 1 below). Next, we establish

the asymptotic properties of the estimator, namely its
√
N -consistency and asymptotic normality.

We derive an explicit expression for the estimator’s asymptotic covariance matrix and show how

this expression can be used to construct correctly sized confidence intervals for the risk premia.

Our technical assumptions are relatively mild and easily verifiable. In particular, we allow for a

substantial degree of cross-correlation among returns (conditional on the factors’ realizations), and

our assumptions are even weaker than the ones behind the Arbitrage Pricing Theory (APT) of

Ross (1976).

In the first extension of the baseline methodology, we demonstrate that the estimator continues

to exhibit attractive properties even when risk premia vary over time. In particular, it accurately

describes the time-averages of the (time-varying) risk premia over a fixed time interval. We also

derive a suitably modified version of the estimator that permits valid inference on risk premia at

any given point in time. Noticeably, in our analysis we do not need to take a stand on the form

of time variation in risk premia. Our time-varying risk premium estimator can accommodate non-

traded as well as traded factors. For the latter, the traditional estimator based on the factors’

rolling sample mean is asymptotically valid for the true risk premium at a given point in time only

for specific sampling schemes, and it requires a very large T to work when time variation is allowed

for. (See Internet Appendix IA.2 for details.)

Next, we allow for the possibility that the beta-pricing model is misspecified. We provide a new

test of the validity of the beta-pricing relation and derive its large-N distribution under the null

hypothesis that the model is correctly specified.6 Moreover, we show that our test enjoys nice size

and power properties. We then establish the statistical properties of the estimator when the beta-

pricing model is misspecified. This extension is particularly relevant when we reject the model’s

premium, and the beta-pricing model is still linear in the ex post risk premia under the assumptions of either correctly
specified or misspecified models. Finally, the corresponding ex post pricing errors can be used to assess the validity
of a given beta-pricing model when T is fixed. Naturally, when T becomes large, any discrepancy between the ex
ante and ex post risk premia vanishes because the sample mean of the factors converges to its population mean.

6Since our test is specifically designed for scenarios in which N is large, it alleviates the concerns of Lewellen
et al. (2010), Harvey et al. (2016), and Barillas and Shanken (2017) about a particular choice of test assets in the
econometric analysis.
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validity based on the outcome of the specification test, but we are still interested in estimating the

risk premia of a model with a possibly incomplete set of factors. Finally, we study an important case

of deviations from exact pricing, that is, the cross-sectional dependence of expected returns on firm

characteristics. The asymptotic covariance matrix of the normally distributed characteristic premia

estimator is derived in closed form, unlike most approaches in this literature that typically rely on

simulation-based arguments for inference purposes. Our method can be used to determine whether

the beta-pricing model is invalid and to quantify the economic importance of the characteristics

when there are deviations from exact pricing. By employing a new measure, which is immune to

the often-documented cross-correlation between estimated betas and characteristics, we are able

to determine the relative contribution of betas and characteristics to the overall cross-sectional

variation in expected returns.

In the last methodological extension of our baseline analysis, we consider the case of unbalanced

panels. This is a useful extension because eliminating observations for the sole purpose of obtaining

a balanced panel could result in unnecessarily large confidence intervals for the risk premia and

loss of power of the specification test.

We demonstrate the usefulness of our methodology by means of several empirical analyses. The

three prominent beta-pricing specifications that we consider are the Capital Asset Pricing Model

(CAPM), the three-factor Fama and French (1993) model (FF3), and the recently proposed five-

factor Fama and French (2015) model (FF5). We also consider variants of these models augmented

with the non-traded liquidity factor of Pástor and Stambaugh (2003). Our proposed methods under

potential model misspecification uncover a significant pricing ability for all the traded factors in

each of the three models, even when using a relatively short time window of three years. In

contrast, the risk premia estimates often appear to be statistically insignificant when using the

traditional large-T approaches. Based on our methodology, the liquidity factor appears to be

priced in only about one-fifth of the three-year rolling samples examined. We also document strong

patterns of time variation in risk premia, for both traded and non-traded factors. In addition,

our specification test rejects all beta-pricing models (with and without the liquidity factor), even

when a short time window is used. Alternative methodologies, such as the finite-N approach

of Gibbons et al. (1989) and the more recent test of Gungor and Luger (2016), seem to have

substantially lower power in detecting model misspecification. Finally, our results indicate that
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five prominent firm characteristics (book-to-market ratio, asset growth, operating profitability,

market capitalization, and six-month momentum) are important determinants of the cross-section

of expected returns of individual assets. Although the characteristic premia estimates are not

always found to be statistically significant, it seems that these characteristics jointly explain a

fraction of the overall cross-sectional dispersion in expected returns that is about 30 times larger

than the fraction explained by the estimated factors’ betas, regardless of the beta-pricing model

under consideration.

Our paper is related to a large number of studies in empirical asset pricing and financial econo-

metrics. The traditional two-pass cross-sectional regression (CSR) methodology for estimating

beta-pricing models, developed by Black et al. (1972) and Fama and MacBeth (1973), is valid

when T is large and N is fixed. Shanken (1992) shows how the asymptotic standard errors of the

second-pass CSR risk premia estimators are affected by the estimation error in the first-pass betas

and provides standard errors that are robust to the errors-in-variables (EIV) problem.7 Shanken

and Zhou (2007) derive the large-T properties of the two-pass estimator in the presence of global

model misspecification.8 A different form of misspecification, not explored in this paper, can also

occur when some of the factors have zero, or almost zero, betas, a situation that is referred to as the

spurious or “useless” factors problem.9 Lack of identification of the risk premia also arises when at

least one of the betas is cross-sectionally quasi-constant, as documented by Ahn et al. (2013) with

respect to the market factor empirical betas, a case also ruled out here.

Building on Litzenberger and Ramaswamy (1979), Shanken (1992) (Section 6) proposes a large-

N estimator of the ex post risk premium and shows that it is asymptotically unbiased when N

diverges and T is fixed. However, Shanken (1992) does not prove the consistency and asymptotic

normality of this risk premium estimator.10 Differently from Litzenberger and Ramaswamy (1979),

Shanken (1992) demonstrates unbiasedness without imposing a rigid structure on the covariance

7Jagannathan and Wang (1998) relax the conditional homoskedasticity assumption of Shanken (1992). For a
review of the large-T literature on beta-pricing models, see Shanken (1996), Jagannathan et al. (2010), and Kan and
Robotti (2012).

8See also Hou and Kimmel (2006) and Kan et al. (2013).
9Several methods have been developed to deal with this particular form of model misspecification. See, for

example, Jagannathan and Wang (1998), Kan and Zhang (1999a), Kan and Zhang (1999b), Kleibergen (2009), Ahn
et al. (2013), Gospodinov et al. (2014), Burnside (2015), Bryzgalova (2016), Gospodinov et al. (2017), Ahn et al.
(2018), Gospodinov et al. (2018), Kleibergen and Zhan (2018a), and Kleibergen and Zhan (2018b), among others.

10In the same paper, Shanken (1992) provides the well-known standard errors correction for ordinary least squares
(OLS) and generalized least squares (GLS) estimators of the ex post risk premia, but his correction is only valid when
T is large and N is fixed. (See his Section 3.2.)
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matrix of the first-pass residuals.

Following these seminal contributions, other methods have been recently proposed to take ad-

vantage of the increasing availability of large cross-sections of individual securities. Our paper is

close to Gagliardini et al. (2016) in the sense that both studies provide inferential methods for es-

timating and testing beta-pricing models. However, their work is developed in a joint-asymptotics

setting, where both T and N need to diverge. Moreover, they focus on a slightly different parameter

of interest (obtained as the difference between the ex ante risk premia and the factors’ population

mean), which can be derived from the ex post risk premium by netting out the sample mean of

the factor. Like us, Gagliardini et al. (2016) need a bias adjustment because in their setting N is

diverging at a much faster rate than T .11 Moreover, while Gagliardini et al. (2016) assume random

betas, as a consequence of their sampling framework with a continuum of assets, in our analysis

we prefer to keep the betas nonrandom. This is for us mostly a convenience assumption since

we show in the Internet Appendix that allowing for randomness of the betas in a large-N envi-

ronment leaves our theoretical results unchanged. Gagliardini et al. (2016) characterize the time

variation in risk premia by conditioning on observed state variables, whereas we leave the form of

time variation unspecified. Like us, they show how to carry out inference when the beta-pricing

model is globally misspecified. Finally, Gagliardini et al. (2016) allow for a substantial degree of

cross-sectional dependence of the returns’ residuals. Although our setup and assumptions differ

from theirs (mainly because in our framework only N diverges), we also allow for a similar form of

cross-sectional dependence in the residuals’ covariance matrix.

Bai and Zhou (2015) investigate the joint asymptotics of the modified OLS and GLS CSR esti-

mators of the ex ante risk premia. Although the CSR estimators are asymptotically unbiased when

T diverges, they propose an adjustment to mitigate the finite-sample bias. Their bias adjustment

differs from the one suggested by Litzenberger and Ramaswamy (1979) and Shanken (1992), and

studied in this paper, because it relies on a large T for its validity. However, their simulation results

suggest that their bias-adjusted estimator performs well for various values of N and T . Moreover,

since T must be large in their setting, Bai and Zhou (2015) bias-adjustment is asymptotically

negligible, implying that the asymptotic distribution of their CSR estimators is identical to the

11In contrast, recall that in the traditional analysis of the CSR estimator (where T diverges and N is fixed), no
bias adjustment is required.
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asymptotic distribution of the traditional OLS and GLS CSR estimators.12 In contrast, we show

that the asymptotic distribution of the risk premia estimator must necessarily change in the fixed-

T case, where the traditional trade-off between bias and variance emerges. Moreover, consistent

estimation of the asymptotic covariance matrix of our risk premia estimator requires a different

analysis because only N is allowed to diverge. Bai and Zhou (2015) focus exclusively on the case

of a balanced panel under the assumption of correctly specified models. Unlike us, they do not

account for time variation in the risk premia and do not analyze model misspecification.

Giglio and Xiu (2017) propose a modification of the two-pass methodology based on princi-

pal components that is robust to omitted priced factors and mis-measured observed factors, and

establish its validity under joint asymptotics.

Kim and Skoulakis (2018) employ the so-called regression calibration approach used in EIV

models to derive a
√
N -consistent estimator of the ex post risk premia in a two-pass CSR setting.13

Finally, Jegadeesh et al. (2018) propose instrumental-variable estimators of the ex post risk premia,

exploiting the assumed independence over time of the return data.14

As for specification testing, Pesaran and Yamagata (2012) extend the classical test of Gibbons

et al. (1989) to a large-N setting. Besides accommodating only traded factors, the feasible version

of their tests requires joint asymptotics and N needs to diverge at a faster rate than T . Gungor and

Luger (2016) propose a nonparametric testing procedure for mean-variance efficiency and spanning

hypotheses (with tests of the beta-pricing restriction as a special case), and they derive (exact)

bounds on the null distribution of the test statistics using resampling techniques. Their procedure,

which is designed for traded factors only, is valid for any N and T , even though they show that

the power of their test increases when both N and T diverge. Gagliardini et al. (2016) derive the

asymptotic distribution of their specification test under joint asymptotics and, like us, they allow

12Gagliardini et al. (2016) show that the bias adjustment in their framework is not asymptotically negligible when
N diverges at a much faster rate than T , a case not explicitly studied in Bai and Zhou (2015).

13Building on Jagannathan et al. (2010), the Kim and Skoulakis (2018) estimator can be seen as an alternative
to the Shanken estimator, the only difference being that in Kim and Skoulakis (2018) the first- and second-pass
regressions are evaluated on non-overlapping time periods.

14Besides the classical econometric challenges associated with the choice of potentially weak instruments, these
instrumental-variable approaches require a relatively larger T in order to achieve the same statistical accuracy of
the Shanken (1992) estimator. Moreover, the construction of the instruments in Jegadeesh et al. (2018) hinges upon
the assumption of stochastic independence over time of the return data. The same assumption is also required in
Kim and Skoulakis (2018). In contrast, it can be shown that the Shanken (1992) estimator retains its asymptotic
properties even when the data is not independent over time. In fact, an arbitrary degree of serial dependence of the
return data can be allowed for.
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for general factors. Finally, Gagliardini et al. (2018) propose a diagnostic criterion for detecting

the number of omitted factors from a given beta-pricing model and establish its statistical behavior

under joint asymptotics.

Having detailed our contributions and related them to the existing literature, we now discuss

when our methodology should be used, from three different angles. With respect to the sampling

scheme, our methodology is theoretically justified when T is fixed and N diverges. In contrast, the

limiting results for the traditional CSR estimators cited above are valid when T diverges with a

fixed N as well as when both T and N diverge. Proposition 3 in the paper warns us about using

these traditional methods under our reference sampling scheme. Moreover, based on numerous

Monte Carlo experiments, previous studies have found that the large-T approximations of the CSR

estimators are reliable only when five or more decades of data are used. (See Chen and Kan (2004)

and Shanken and Zhou (2007), among others.) Therefore, our methodology could be useful also in

scenarios where the time-series dimension is relatively large.

Starting from traded factors and assuming that the true risk premia are constant and the

model is correctly specified, the sample means of the factors’ excess returns or return spreads

could be used as risk premia estimators of the true factors’ means. However, a sufficiently large

T is required for the sample means to converge to their population counterparts. For non-traded

factors, for example, macroeconomic variables, a panel of test asset returns is required to pin

down the factors’ risk premia, as the time series of the factors do not suffice. Mimicking portfolio

excess returns could also be used in place of the non-traded factors, with the population means of

the mimicking portfolio excess returns serving as the true risk premia.15 However, the mimicking

portfolio projection requires N < T , which is violated under our reference sampling scheme.16

Finally, when the risk premia are time-varying, the argument for using our methodology ap-

pears even more compelling. Note that the considerations above regarding alternative estimation

15See Breeden et al. (1989), Chan et al. (1998), and Lamont (2001), among others, for empirical studies based on the
mimicking portfolio methodology. Balduzzi and Robotti (2008) demonstrate by means of Monte Carlo simulations
the greater accuracy of the mimicking portfolio risk premia estimates relative to the CSR risk premia estimates
associated with the corresponding non-traded factors.

16When N > T , one could obtain the first Ñ principal components from a large panel of test assets returns, and
then construct the mimicking portfolio for the non-traded factor using these Ñ assets (assuming that Ñ < T < N).
Although this approach is feasible and is used in our empirical application, the theoretical properties of this double-
projection approach are difficult to derive; see Giglio and Xiu (2017) for a theoretical analysis of a similar approach.
We are grateful to an anonymous referee for suggesting this approach to us.
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procedures for the traded factors case hold for both constant and time-varying risk premia. In

particular, the (rolling) sample mean of the excess return on the traded factor (or of the return

spread) will capture, in general, the average, over T observations, of the true time-varying risk

premium associated with the factor. Alternatively, one can adopt the sampling scheme typical of

nonparametric methods, with the implication that now the (rolling) sample mean will capture the

time-varying risk premium and not just its average. However, a very large T would be necessary to

obtain accurate estimates and a certain degree of smoothness, over time, of the true time-varying

risk premium would be required. (See the Internet Appendix IA.2 for further details.) Our method

for time-varying risk premia works for any T and makes no smoothness assumption.

To summarize, compelling reasons for using our methodology arise when T is fairly small (and, in

particular, smaller thanN), when considering models with non-traded factors, and when interest lies

in the time variation in risk premia on traded and non-traded factors. In addition, our methodology

can handle potential model misspecification (due, for example, to omitted pervasive factors) and, in

particular, it provides a natural framework to determine whether the rejection of the beta-pricing

relation is due to priced firm characteristics. Finally, we can easily accommodate unbalanced panels

in the analysis.

The rest of the paper is organized as follows. Section 1 surveys the two-pass OLS CSR method-

ology, introduces our main assumptions, and sets the notation. Section 2 presents the asymptotic

results for constant and time-varying risk premia estimates under correctly specified models. Sec-

tion 3 generalizes our theory to potentially misspecified beta-pricing models with and without firm

characteristics. In Section 4, we investigate the empirical performance of FF5. Section 5 concludes.

The technical proofs are in the Appendix.17

1. The Two-Pass Methodology

This section introduces the notation and summarizes the two-pass OLS CSR methodology. We

assume that the asset returns Rt = [R1t, . . . , RNt]
′ are governed by the following beta-pricing

17The Internet Appendix (IA) contains additional material: Section IA.1 provides a discussion of random betas;
Section IA.2 describes the properties of nonparametric estimation methods for the risk premia on traded factors under
various sampling schemes; Section IA.3 illustrates the finite-N sampling properties of the Shanken estimator and of
the associated specification test using Monte Carlo simulations; Section IA.4 provides an extension of our baseline
analysis to unbalanced panels; Section IA.5 contains empirical results for CAPM, FF3, and additional results for
FF5.
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model:

Rit = αi + βi1f1t + · · ·+ βiKfKt + εit = αi + β′ift + εit, (1)

where i denotes the i-th asset, with i = 1, . . . , N, t refers to time, with t = 1, . . . , T, αi is a

scalar parameter representing the asset specific intercept, βi = [βi1, . . . , βiK ]′ is a vector of multiple

regression betas of asset i with respect to the K factors ft = [f1t, . . . , fKt]
′, and εit is the i-th

return’s idiosyncratic component. In matrix notation, we can write the model above as

Rt = α+Bft + εt, t = 1, . . . , T, (2)

where α = [α1, . . . , αN ]′, B = [β1, . . . , βN ]′, and εt = [ε1t, . . . , εNt]
′. Let Γ = [γ0, γ

′
1]′, where γ0 the

zero-beta rate and γ1 is the K-vector of ex ante factor risk premia, and denote by X = [1N , B] the

beta matrix augmented with 1N , an N -vector of ones. The following assumption of exact pricing

is used at various points in the analysis below.

Assumption 1

E[Rt] = XΓ. (3)

Eq. (3) follows, for example, from no-arbitrage (see Condition A in Chamberlain (1983)) and a

well-diversified mean-variance frontier (Definition 4 in Chamberlain (1983)).18

Averaging Eq. (2) over time, where we set R̄ = 1
T

∑T
t=1Rt = [R̄1, . . . , R̄N ]′, ε̄ = 1

T

∑T
t=1 εt, and

f̄ = [f̄1, . . . , f̄K ]′ = 1
T

∑T
t=1 ft, imposing Assumption 1, and noting that E[Rt] = α + BE[ft] from

Eq. (2), yields

R̄ = XΓP + ε̄, (4)

where ΓP = [γ0, γ
P
1
′]′, and

γP1 = γ1 + f̄ − E[ft]. (5)

From Eq. (4), average returns are linear in the asset betas conditional on the factor outcomes

through the quantity γP1 , which, in turn, depends on the factors’ sample mean innovations, f̄−E[ft].

The random coefficient vector γP1 in Eq. (5) is referred to as the vector of ex post risk premia.19

18It should be noted that the mere absence of arbitrage is not sufficient for exact pricing, that is, nonzero pricing
errors can coexist with no-arbitrage, as in the case of the APT of Ross (1976).

19For traded factors, Eq. (5) reduces to γP1 = f̄ − γ01K , where 1K is a K-vector of ones. (See Shanken (1992).)
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Eq. (5) shows that Γ and ΓP will coincide when f̄ = E[ft], which happens for T → ∞. When

T is small, ex ante and ex post risk premia can differ substantially, as emphasized in the empirical

section of the paper, although γP1 remains an unbiased measure for the ex ante risk premia, γ1.
20

Note that Eq. (4) cannot be used to estimate the ex post risk premia ΓP since X is not

observed. For this reason, the popular two-pass OLS CSR method first obtains estimates of the

betas by running the following multivariate regression for every i:

Ri = αi1T + Fβi + εi, (6)

where Ri = [Ri1, . . . , RiT ]′, εi = [εi1, . . . , εiT ]′, F = [f1, . . . , fT ]′ is the T ×K matrix of factors, and

1T is a T -vector of ones. Then, the OLS estimates of B are given by

B̂ = R′F̃ (F̃ ′F̃ )−1 = B + ε′P, (7)

where B̂ = [β̂1, . . . , β̂N ]′, R = [R1, . . . , RN ], ε = [ε1, . . . , εN ], and P = F̃ (F̃ ′F̃ )−1 with F̃ =

[f̃1, . . . , f̃T ]′ =
(
IT −

1T 1′T
T

)
F = F − 1T f̄

′, where IT is the identity matrix of order T. The corre-

sponding matrix of OLS residuals is given by ε̂ = [ε̂1, . . . , ε̂N ] = R− 1T R̄
′ − F̃ B̂′.

We then run a single CSR of the sample mean vector R̄ on X̂ = [1N , B̂] to estimate the risk

premia. Note that we have two alternative feasible representations of Eq. (4), that is,

R̄ = X̂Γ + η, (8)

with residuals η =
[
ε̄+B(f̄ − E[ft])− (X̂ −X)Γ

]
, and

R̄ = X̂ΓP + ηP , (9)

with residuals ηP =
[
ε̄− (X̂ −X)ΓP

]
. The OLS CSR estimator applied to either Eq. (8) or Eq. (9)

yields

Γ̂ =

[
γ̂0

γ̂1

]
= (X̂ ′X̂)−1X̂ ′R̄. (10)

However, when T is fixed, Γ̂ cannot be used as a consistent estimator of the ex ante risk premia, Γ,

in Eq. (8) and of the ex post risk premia, ΓP , in Eq. (9). The reason is that neither B̂ converges to

B, nor f̄ converges to E[ft] unless T →∞. Focusing on the representation in Eq. (9), the OLS CSR

20It should be noted that any valid estimator of γP1 provides, as a by-product, a valid estimator of the population
parameter ν = γ1 − E[ft] = γP1 − f̄ , namely the portion of the ex ante risk premia that is nonlinearly related to the
factors. This is the quantity studied in Gagliardini et al. (2016).
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estimator can be corrected as follows. Denote by tr(·) the trace operator and by 0K a K-vector of

zeros. In addition, let

σ̂2 =
1

N(T −K − 1)
tr(ε̂′ε̂). (11)

The bias-adjusted estimator of Shanken (1992) is then given by

Γ̂∗ =

[
γ̂∗0

γ̂∗1

]
=
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N
, (12)

where

Σ̂X =
X̂ ′X̂

N
and Λ̂ =

[
0 0′K

0K σ̂2(F̃ ′F̃ )−1

]
. (13)

The formula for the estimator Γ̂∗ exhibits a multiplicative bias adjustment through the term(
Σ̂X − Λ̂

)−1
.21 This prompts us to explore the analogies of Γ̂∗ with the more conventional class

of additive bias-adjusted OLS CSR estimators. To this end, it is useful to consider the following

expression for the OLS CSR estimator, Γ̂, obtained from Bai and Zhou (2015) in their Theorem 1:

Γ̂ = ΓP +

(
X̂ ′X̂

N

)−1 [
0 0′K

0K −σ̂2(F̃ ′F̃ )−1

]
ΓP +Op

(
1√
N

)

= ΓP −

(
X̂ ′X̂

N

)−1

Λ̂ΓP +Op

(
1√
N

)
. (14)

This formula suggests a simple way to construct an additive bias-adjusted estimator of ΓP ; that is,

Γ̂bias−adj = Γ̂ +

(
X̂ ′X̂

N

)−1

Λ̂Γ̂prelim, (15)

where Γ̂prelim is an arbitrary preliminary estimator of ΓP .22 The next proposition shows that,

by imposing that the preliminary estimator, Γ̂prelim, and the bias-adjusted estimator, Γ̂bias−adj ,

coincide, the unique solution to Eq. (15) is the Shanken (1992) estimator Γ̂∗ in Eq. (12).

Proposition 1 Assume that Σ̂X − Λ̂ is nonsingular. Then, the Shanken (1992) estimator Γ̂∗ in

Eq. (12) is the unique solution to the linear system of equations:

Γ̂∗ = Γ̂ +

(
X̂ ′X̂

N

)−1

Λ̂Γ̂∗. (16)

21Eq. (15) in Shanken (1992) differs slightly from our Eq. (12). The reason is that we do not impose the traded-
factor restriction of Shanken (1992) in our setting.

22For example, Bai and Zhou (2015) propose using the OLS CSR Γ̂ itself as the preliminary estimator, plugging
it into the formula above in place of Γ̂prelim. However, this adjustment is justified only when T →∞. In general, the
use of a preliminary estimator would decrease the precision of the bias-adjusted estimator and, in addition, it would
make its properties harder to study.
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Proof: See Appendix B.

Therefore, Γ̂∗ is the unique additive bias-adjusted OLS CSR estimator that does not require

the preliminary estimation of the risk premia. As a computational precaution, it is possible that

the EIV correction in Eq. (12) overshoots, making the matrix
(

Σ̂X − Λ̂
)

almost singular for a

given N and potentially leading to extreme values for the estimator. To alleviate this risk, our

suggestion is to multiply the matrix Λ̂ by a scalar k (0 ≤ k ≤ 1) and to substitute
(

Σ̂X − Λ̂
)−1

with
(

Σ̂X − kΛ̂
)−1

in Eq. (12), effectively yielding a shrinkage estimator.23 If k is zero, we obtain

the OLS CSR estimator Γ̂, whereas if k is one, we obtain the Shanken (1992) estimator Γ̂∗.24 In

our simulation experiments, we find that this shrinkage estimator is virtually unbiased, leading to

k = 1. In contrast, in our empirical application in Section 4, shrinking is applied to roughly 75% of

the cases (the average k is 0.58) when T = 36 and to 5% of the cases (the average k is 0.71) when

T = 120. Our shrinkage adjustment can also alleviate the documented evidence of cross-sectional

quasi-homogeneity for the loadings associated with certain risk factors, in particular for the market

factor (see Ahn et al. (2013)).25

Before turning to the challenging task of deriving the large-N distribution of the Shanken (1992)

estimator (and the associated standard errors), we discuss the perils of using the traditional t-ratios

(specifically designed for a large-T environment) when N diverges. We first introduce the necessary

assumptions and then present our results in Proposition 3 below.

23Our asymptotic theory would require k = kN to converge to unity at a suitably slow rate as N increases. We
omit the details to simplify the exposition.

24The choice of the shrinkage parameter k can be based on the eigenvalues of the matrix
(

Σ̂X − kΛ̂
)

as follows.

Starting from k = 1, if the minimum eigenvalue of this matrix is negative and/or the condition number of this
matrix is larger than 20 (as suggested by Greene (2003), p. 60), then we lower k by an arbitrarily small amount.
In our empirical application we set this amount equal to 0.05 and perform shrinkage whenever the absolute value of
the relative change between the Shanken (1992) and the OLS CSR estimators is greater than 100%. We iterate this
procedure until the minimum eigenvalue is positive and the condition number becomes less than 20. Gagliardini et al.
(2016) rely on similar methods to implement their trimming conditions. Alternatively, one could use cross-validation
to set the value of k.

25Ahn et al. (2013) propose the so-called invariance beta (IB) coefficient as a measure of cross-sectional homogene-
ity. Applying their measure to our data on FF5, we find that the IB coefficient corresponding to the market factor
equals 0.74 and 0.81 for rolling samples of size T = 36 and T = 120, respectively (averages across rolling samples).
The IB coefficient is equal to 0.93 when considering the whole sample. According to Ahn et al. (2013), these values
signal a very moderate risk of multicollinearity due to cross-sectional homogeneity. Similar values of the IB coefficient
associated with the loadings on the market factor are obtained when estimating CAPM and FF3.
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Assumption 2 As N →∞,

1

N

N∑
i=1

βi → µβ and
1

N

N∑
i=1

βiβ
′
i → Σβ, (17)

such that the matrix

[
1 µ′β
µβ Σβ

]
is positive-definite. (18)

Assumption 2 states that the limiting cross-sectional averages of the betas, and of the squared betas,

exist. The second part of Assumption 2 rules out the possibility of spurious factors and situations

in which at least one of the elements of βi is cross-sectionally constant. (See Ahn et al. (2013).)

It implies that X has full (column) rank for N sufficiently large. To simplify the exposition, we

assume that the βi are nonrandom.26

Assumption 3 The vector εt is independently and identically distributed (i.i.d.) over time with

E[εt|F ] = 0N (19)

and a positive-definite matrix,

Var[εt|F ] =


σ2

1 σ12 · · · σ1N

σ21 σ2
2 · · · σ2N

...
... · · ·

...
σN1 σN2 · · · σ2

N

 = Σ, (20)

where 0N is a N -vector of zeros, and σij denotes the (i, j)-th element of Σ, for every i, j = 1, . . . , N

with σ2
i = σii.

The i.i.d. assumption over time is common to many studies, including Shanken (1992). However,

our large N asymptotic theory, in principle, permits the εit to be arbitrarily correlated over time,

but the expressions would be more complicated. Conditions (19) and (20) are verified if the factors

ft and the innovations εs are mutually independent for any s, t. Noticeably, Condition (20) is not

imposing any specific structure on the elements of Σ. In particular, we are not assuming that the

returns’ innovations are uncorrelated across assets or exhibit the same variance. However, our

large-N asymptotic theory needs to discipline the degree of cross-correlation among the residuals,

26See Gagliardini et al. (2016) for a treatment of the beta-pricing model with random betas. In Internet Ap-
pendix IA.1, we discuss the consequences of relaxing the nonrandomness of the βi.
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although still allowing for a substantial degree of heterogeneity in the cross-section of asset returns.

(See Assumption 5 below.)

As for the factors, we impose minimal assumptions because our asymptotic analysis holds

conditional on the factors’ realizations.

Assumption 4 E[ft] does not vary over time. Moreover, F̃ ′F̃ is a positive-definite matrix for

every T ≥ K.

Assumption 5 As N →∞,

(i)

1

N

N∑
i=1

(
σ2
i − σ2

)
= o

(
1√
N

)
, (21)

for some 0 < σ2 <∞.

(ii)
N∑

i,j=1

| σij | 1{i 6=j} = o (N) , (22)

where 1{·} denotes the indicator function.

(iii)

1

N

N∑
i=1

µ4i → µ4, (23)

for some 0 < µ4 <∞ where µ4i = E[ε4it].

(iv)

1

N

N∑
i=1

σ4
i → σ4, (24)

for some 0 < σ4 <∞.

(v)

sup
i
µ4i ≤ C <∞, (25)

for a generic constant C.

(vi)

E[ε3it] = 0. (26)
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(vii)

1

N

N∑
i=1

κ4,iiii → κ4, (27)

for some 0 ≤ |κ4| <∞, where κ4,iiii = κ4(εit, εit, εit, εit) denotes the fourth-order cumulant of

the residuals {εit, εit, εit, εit}.

(viii) For every 3 ≤ h ≤ 8, all the mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,i1i2...ih | = o (N) , (28)

for at least one ij (2 ≤ j ≤ h) different from i1.

Assumption 5 essentially describes the cross-sectional behavior of the model disturbances. In par-

ticular, Assumption 5(i) limits the cross-sectional heterogeneity of the return conditional variance.

Assumption 5(ii) implies that the conditional correlation among asset returns is sufficiently weak.

Assumptions 5(i) and 5(ii) allow for many forms of strong cross-sectional dependence, as emphasized

by the following proposition, which considers the case in which the εit obey a factor structure.

Proposition 2 Assume that

εi,t = λiut + ηi,t, (29)

where
N∑
i=1

|λi| = O(N δ), 0 ≤ δ < 1/2, (30)

and (without loss of generality) for some fixed q < N and some constant C,

λ1 + · · ·+ λq ∼ CN
δ
2 , (31)

with ut i.i.d. (0, 1) and ηi,t i.i.d. (0, σ2
η) over time and across units, where the ut and the ηi,s are

mutually independent for every i, s, t. Then,

(i) Assumption 5(i) and 5(ii) are satisfied with σ2 = σ2
η.

(ii) The maximum eigenvalue of Σ diverges as N →∞.27

27 The maximum eigenvalue of Σ is given by supzs.t.‖z‖=1 z
′Σz.
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Proof: See Appendix B.

Note that the boundedness of the maximum eigenvalue is the most common assumption on the

covariance matrix of the disturbances in beta-pricing models. (See, e.g., the generalization of the

APT by Chamberlain and Rothschild (1983).) Our assumptions are weaker than the ones for the

APT because the maximum eigenvalue can now diverge. This implies that the row-column norm of

Σ, sup1≤i≤N
∑N

j=1 |σij |, diverges.28 Eq. (29) is adopted in our Monte Carlo experiments reported in

the Internet Appendix. Other special cases nested by Assumption 5 for which the cross-covariances

σij are nonzero are network and spatial measures of cross-dependence and a suitably modified

version of the block-dependence structure of Gagliardini et al. (2016).29

In Assumption 5(iii), we simply assume the existence of the limit of the conditional fourth-

moment, averaged across assets. In Assumption 5(iv), the magnitude of σ4 reflects the degree of

cross-sectional heterogeneity of the conditional variance of the asset returns. Assumption 5(v) is

a bounded fourth-moment condition uniform across assets, which implies that supi σ
2
i ≤ C < ∞.

Assumption 5(vi) is a convenient symmetry assumption, but it is not strictly necessary for our

results. Without 5(vi) the asymptotic distribution would be more involved, due to the presence

of terms such as the third moment of the disturbance (averaged across assets). Assumption 5(vii)

allows for non-Gaussianity of the asset returns when |κ4| > 0. For example, this assumption is

satisfied when the marginal distribution of asset returns is a Student t with degrees of freedom

greater than four. However, when estimating the asymptotic covariance matrix of the Shanken

(1992) estimator, one needs to set κ4 = 0 merely for identification purposes, as explained in

Lemma 6 in Appendix A. However, higher-order cumulants are not constrained to be zero, implying

that κ4 = 0 is not equivalent to Gaussianity. We are now ready to state our Proposition 3.

Proposition 3 Under Assumptions 1-5 and as N → ∞, the Fama and MacBeth (1973) t-ratios

for Γ̂ = [γ̂0, γ̂11, . . . , γ̂1k, . . . , γ̂1K ]′ based on the correction of Shanken (1992) satisfy the following

relations.

28Assumption 5 allows for the maximum eigenvalue of Σ to diverge at rate o
(√

N
)

. (See the proof of Proposition 2

for details.) Gagliardini et al. (2016) can allow for a faster rate, o(N), of divergence of the maximum eigenvalue of
Σ because both T and N diverge in their double-asymptotics setting.

29Gagliardini et al. (2016) Assumption BD.2 on block sizes and block numbers requires that the largest block
size shrinks with N and that there are not too many large blocks; that is, the partition in independent blocks is
sufficiently fine-grained asymptotically. They show formally that such block-dependence structure is compatible with
the unboundedness of the maximum eigenvalue of Σ.
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(i) For the ex ante risk premia Γ = [γ0, γ11, . . . , γ1k, . . . , γ1K ]′, we have

|tFM (γ̂0)| = |γ̂0 − γ0|
SEFM0

→p ∞ (32)

and

|tFM (γ̂1k)| =
|γ̂1k − γ1k|
SEFMk

→p

∣∣∣∣∣ f̄k − E[fkt]

σ̂k/
√
T
−
ı′k,KA

−1CγP1

σ̂k/
√
T

∣∣∣∣∣ for k ≥ 1. (33)

(ii) For the ex post risk premia ΓP = [γ0, γ
P
11, . . . , γ

P
1k, . . . , γ

P
1K ]′, we have

|tFM,P (γ̂0)| = |γ̂0 − γ0|
SEFM,P

0

→p ∞ (34)

and

|tFM,P (γ̂1k)| =
|γ̂1k − γP1k|
SEFM,P

k

→p ∞ for k ≥ 1, (35)

where SEFMk and SEFM,P
k are the Fama and MacBeth (1973) standard errors with the

Shanken (1992) correction corresponding to the ex ante and ex post risk premia, respectively

(see Appendix B for details), and where ık,K is k-th column of the identity matrix IK , σ̂2
k is

the (k, k)-th element of F̃ ′F̃ /T, A = Σβ − µβµ′β + C, and C = σ2(F̃ ′F̃ )−1.

Proof: See Appendix B.

In summary, Proposition 3 shows that a methodology designed for a fixed N and a large T , such

as the one based on the Fama and MacBeth (1973) standard errors with the Shanken’s correction,

is likely to lead to severe over-rejections when N is large, thus rendering the inference on the beta-

pricing model invalid.30 Our Monte Carlo simulations corroborate this finding, as emphasized in

the Internet Appendix. Moreover, Proposition 3 shows that when N and T are large, there is no

need to apply the correction of Shanken (1992) to the Fama and MacBeth (1973) standard errors.

2. Asymptotic Analysis under Correctly Specified Models

In this section, we establish the limiting distribution of the Shanken (1992) bias-adjusted estimator,

Γ̂∗, and explain how its asymptotic covariance matrix can be consistently estimated.

30In particular, the t-ratio of the OLS CSR estimator for a particular element of the ex ante risk premium vector,
γ1, equals the standardized sample mean of the associated factor plus a bias term. When T is allowed to diverge, the
convergence of this t-ratio to a standard normal is re-obtained, but, for any given T , the deviations from normality
can be substantial.
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2.1 Baseline case

Our baseline case assumes that the beta-pricing model is correctly specified, that the risk premia

are constant, and that the panel is balanced. This corresponds to the setup of Shanken (1992).

Let ΣX =

[
1 µ′β
µβ Σβ

]
, σ2 = lim 1

N

∑N
i=1 σ

2
i , Uε = lim 1

N

∑N
i,j=1E

[
vec(εiε

′
i − σ2

i IT )vec(εjε
′
j −

σ2
j IT )′

]
, M = IT −D(D′D)−1D′, where µβ, Σβ, and σ2

i are defined in our assumptions above, Uε

is described in Appendix C, D = [1T , F ], Q = 1T
T − Pγ

P
1 , Z = (Q ⊗ P) + vec(M)

T−K−1γ
P ′
1 P ′P, and ⊗

and vec(·) denote the Kronecker product operator and the vec operator, respectively.

We make the following further assumption to derive the large-N distribution of the Shanken

(1992) estimator.

Assumption 6 As N →∞, we have

(i)

1√
N

N∑
i=1

εi
d→ N

(
0T , σ

2IT
)
. (36)

(ii)

1√
N

N∑
i=1

vec(εiε
′
i − σ2

i IT )
d→ N (0T2 , Uε). (37)

(iii) For a generic T -vector CT ,

1√
N

N∑
i=1

(
C ′T ⊗

(
1
βi

))
εi

d→ N (0K+1, Vc), (38)

where Vc = cσ2ΣX and c = C ′TCT . In particular, 1√
N

∑N
i=1 (C ′T ⊗ βi) εi

d→ N (0K , V
†
c ), where

V †c = cσ2Σβ.

Primitive conditions for Assumption 6 can be derived but at the cost of raising the level of com-

plexity of our proofs. For instance, when Eqs. (29)-(30) hold, then Eq. (36) follows by Theorem 2 of

Kuersteiner and Prucha (2013) when the ηit satisfy their martingale difference assumptions. (See

their Assumptions 1 and 2.) This result extends easily to Eqs. (37)-(38) under suitable additional

assumptions. (Details are available upon request.) We are now ready to state our first theorem.

Theorem 1 As N →∞, we have
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(i) Under Assumptions 1–5,

Γ̂∗ − ΓP = Op

(
1√
N

)
. (39)

(ii) Under Assumptions 1–6,

√
N
(

Γ̂∗ − ΓP
)
→d N

(
0K+1, V + Σ−1

X WΣ−1
X

)
, (40)

where

V =
σ2

T

1 + γP1
′

(
F̃ ′F̃

T

)−1

γP1

Σ−1
X (41)

and

W =

[
0 0′K

0K Z ′UεZ

]
. (42)

Proof: See Appendix B.

The expression in Eq. (40) is remarkably simple and has a neat interpretation. The first term

of this asymptotic covariance, V , accounts for the estimation error in the betas, and it is essentially

identical to the large-T expression of the asymptotic covariance matrix associated with the OLS

CSR estimator in Shanken (1992). (See his Theorem 1(ii).) The term σ2

T Σ−1
X in Eq. (41) is the

classical OLS CSR covariance matrix, which one would obtain if the betas were observed. The term

c = γP1
′
(
F̃ ′F̃ /T

)−1
γP1 is an asymptotic EIV adjustment, with cσ

2

T Σ−1
X being the corresponding

overall EIV contribution to the asymptotic covariance matrix. As Shanken (1992) points out, the

EIV adjustment reflects the fact that the variability of the estimated betas is directly related to the

residual variance, σ2, and inversely related to the factors’ variability,
(
F̃ ′F̃ /T

)−1
. The last term

of the asymptotic covariance, Σ−1
X WΣ−1

X in Eq. (40), arises because of the bias adjustment that

characterizes Γ̂∗. The W matrix in Eq. (42) accounts for the cross-sectional variation in the residual

variances of the asset returns through Uε. This term will vanish when T → ∞. In Appendix C,

we provide an explicit expression for Uε, and we show that Uε only depends on the fourth-moment

structure of the εit, that is, on κ4 and σ4.
31 The

√
N -rate of convergence obtained in Theorem 1-(i)

coincides with the rate of convergence established by Gagliardini et al. (2016) with respect to their
√
NT -consistent estimator of ν = γP1 − f̄ when T is fixed.

31See Assumption 5 for the definition of κ4 (the cross-sectional average of the fourth-order cumulants of the εit)
and σ4 (the cross-sectional average of the σ4

i ).
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To conduct statistical inference, we need a consistent estimator of the asymptotic covariance

matrix, which we present in the next theorem. Let M (2) = M�M , where � denotes the Hadamard

product operator. In addition, define

Ẑ = (Q̂⊗ P) +
vec(M)

T −K − 1
γ̂∗
′

1 P ′P with Q̂ =
1T
T
− P γ̂∗1 . (43)

Theorem 2 Under Assumptions 1-5 and the identification condition κ4 = 0, as N →∞, we have

V̂ +
(

Σ̂X − Λ̂
)−1

Ŵ
(

Σ̂X − Λ̂
)−1
→p V + Σ−1

X WΣ−1
X , (44)

where

V̂ =
σ̂2

T

1 + γ̂∗1
′

(
F̃ ′F̃

T

)−1

γ̂∗1

 (Σ̂X − Λ̂)−1, (45)

Ŵ =

[
0 0′K

0K Ẑ ′ÛεẐ

]
, (46)

and Ûε is a consistent estimator of Uε (see Appendix C), obtained replacing σ4 with

σ̂4 =
1
N

∑T
t=1

∑N
i=1 ε̂

4
it

3tr
(
M (2)

) . (47)

Proof: See Appendix B.

A remarkable feature of the result above is that a consistent estimate of the asymptotic co-

variance matrix of Γ̂∗ can be obtained while leaving the residual covariance matrix Σ unspecified.

In fact, with Σ having in general N(N + 1)/2 distinct elements and our asymptotic theory being

valid only for N → ∞, consistent estimation of Σ would be infeasible. A convenient feature of

the Shanken (1992) estimator is that it depends on Σ only through the average of the σ2
i . More-

over, its asymptotic covariance matrix depends on the limits of
∑N

i,j=1 σij/N and
∑N

i=1 σ
4
i /N. Our

large N asymptotic theory shows how these quantities can be estimated consistently. In contrast,

the individual covariances σij cannot be consistently estimated due to the fixed T. The condition

κ4 = 0 is required as a consequence of the small-T and large-N framework.32 However, κ4 = 0

32As we show in detail in Lemma 6 of Appendix A, the limit of σ̂4 in Eq. (47) converges to a linear combination of
k4 and σ4. These two parameters could be identified and consistently estimated only under the stronger assumption
of independence across assets, since, in this case, σ4 would reduce to σ4 (which could be easily estimated using the
square of σ̂2). In contrast, allowing for some arbitrary degree of cross-correlation implies that k4 and σ4 cannot be
separately identified. This is the reason for setting k4 = 0.
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is not as restrictive as it may seem. A sufficiently large level of heterogeneity in the σ2
i gener-

ates a substantial level of volatility in the conditional distribution of assets’ returns by inducing a

mixture-distribution effect.33

2.2 Time-varying case

In this section, we study the behavior of the estimator Γ̂∗ when the risk premia are allowed to

be time-varying, again under the assumption of correct model specification. It turns out that Γ̂∗

is suitable for time-varying risk premia estimation because it estimates accurately local averages

(over the, possibly very short, time window of size T > K + 1) of the true time-varying risk

premia, regardless of their form and degree of time variation. Noticeably, we are also able to

derive a consistent estimator of the true t-th period risk premia and to characterize its asymptotic

distribution.34

Throughout this section, we substitute Assumption 1 with

Et−1[Rit] = γ0,t−1 + β′iγ1,t−1, (48)

where Et−1[·] denotes the conditional expectation with respect to all the available information

up to time t − 1. Importantly, our theory does not need to restrict the type of time variation

in Γt−1 =
[
γ0,t−1, γ

′
1,t−1

]′
. To simplify the treatment of time variation in the premia, without

altering the estimation procedure developed in this paper, we maintain the βi in Eq. (48) constant

over time.35 Our results below easily extend to the case of βi,t−1 = Bizt−1, for some (vector of)

predetermined state variables zt−1 and a suitable matrix of loadings Bi.

Under Eq. (48), asset returns are now given by Rit = [1, β′i]Γ
P
t−1 + εit, where ΓPt−1 are the

(t−1)-th ex post risk premia:

ΓPt−1 = Γt−1 + ft − Et−1[ft], with a sample average Γ̄P =
1

T

T∑
t=1

ΓPt−1. (49)

By construction, the ex post time-varying risk premia ΓPt−1 have a conditional mean that equals

Γt−1, the ex ante time-varying risk premia.

33In our empirical applications our estimate σ4 is about 10 times the estimate for σ4.
34Our new estimator for the time-varying risk premia appears useful also for traded factors, and not just for

non-traded factors, particularly within our fixed-T environment (see the Internet Appendix IA.2 for further details),
especially when T is assumed to be very small.

35See, e.g., Ferson and Harvey (1991) who argue that the time variation in expected returns is mainly due to time
variation in the premia as opposed to time variation in the betas.
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To estimate the (t−1)-th risk premia, for t = 1, . . . , T, we introduce the following novel estimator:

Γ̂∗t−1 =

[
γ̂∗0,t−1

γ̂∗1,t−1

]
=
(

Σ̂X − Λ̂
)−1 X̂ ′Rt

N
− σ̂2

(
Σ̂X − Λ̂

)−1
(

0

(F̃ ′F̃ )−1F̃ ′ıt,T

)
, (50)

where, as before, ıt,T denotes the t-th column, for t = 1, . . . , T, of the identity matrix IT .36 The

next theorem derives the large-N behavior of both Γ̂∗ and Γ̂∗t−1.

Theorem 3 Under Eq. (48) and Assumptions 2-6, as N →∞, we have

(i) Γ̂∗ and
√
N(Γ̂∗ − Γ̄P ) satisfy Theorem 1 with ΓP replaced by Γ̄P .

(ii) Γ̂∗t−1 − ΓPt−1 = Op

(
1√
N

)
and

√
N
(

Γ̂∗t−1 − ΓPt−1

)
→d N

(
0K+1, Vt−1 + Σ−1

X Wt−1Σ−1
X

)
, (51)

where Vt−1 = σ2Q′t−1Qt−1Σ−1
X , Wt−1 =

[
0 0′K

0K Z ′t−1UεZt−1

]
, Qt−1 = ıt,T − PγP1,t−1, and

Zt−1 = (Qt−1 ⊗ P)− vec(M)
T−K−1Q

′
t−1P, with Uε as in Theorem 1.

Proof: See Appendix B.

Theorem 3 states that, when Eq. (48) holds, Γ̂∗ consistently estimates the local average of the

ex post time-varying risk premia over T periods, the only requirement being that T > K+1. If one

is interested in the ex post risk premia for a specific time period, ΓPt−1, then asymptotically correct

inference can be carried out by using Γ̂∗t−1. Interestingly, Γ̂∗ is numerically identical to the sample

mean of Γ̂∗t−1, over t = 1, . . . , T, because the additive bias adjustment, on the right-hand side of

Eq. (50), vanishes due to the identity
∑T

t=1 F̃
′ıt,T = F̃ ′1T = 0.

To better understand the importance of our large-N results, it is useful to consider the behavior

of the OLS CSR estimator Γ̂ when Eq. (48) holds. In this case, we have

Γ̂→p Γ∞ as T →∞, (52)

where Γ∞ = limT→∞
1
T

∫ T
0 Γsds denotes the integrated risk premia, namely the long-run average

over the entire timeline.37 Next, consider Γ̂t−1 = (X̂ ′X̂)−1X̂ ′Rt, which can be thought of as the

36Note that Γ̂∗t−1 is a new estimator that successfully tackles the problem of estimating time-varying risk premia
in a large-N setting. It should not be confused with the Shanken (1992) formula in his Theorem 5.

37If one assumes, as in Ang and Kristensen (2012), that Γt = Γ(t/T ), 1 ≤ t ≤ T, for a smooth function Γ(·), then
the integrated risk premia Γ∞ become

∫ 1

0
Γsds.
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OLS CSR estimator for the (t−1)-th risk premia.38 It follows that

Γ̂t−1 →p ΓPt−1 +

(
N 1′NB

B′1N B′B

)−1(
1′N
B′

)
εt as T →∞. (53)

Hence, the limit of Γ̂t−1 is the sum of two components, that is, the (t−1)-th ex post risk premia

ΓPt−1 and a random term that is a function of εt. This last term cannot be consistently estimated,

thus making Γ̂t−1 an unreliable estimator of both Γt−1 and ΓPt−1, even when T →∞. In contrast, in

our large-N framework,
(

Σ̂X − Λ̂
)−1

X̂′Rt
N →p ΓPt−1 +σ2Σ−1

X

(
0

(F̃ ′F̃ )−1F̃ ′ıt,T

)
as N →∞, where

the bias term σ2Σ−1
X

(
0

(F̃ ′F̃ )−1F̃ ′ıt,T

)
can now be consistently estimated, leading to the bias-

adjusted estimator Γ̂∗t−1 in Eq. (50). Finally, a consistent estimator of the asymptotic covariance

matrix of Γ̂∗t−1 in Eq. (51) can be easily obtained. (See Theorem 2 and its proof.)

3. Asymptotic Analysis under Potentially Misspecified Models

In this section, we explore the implications of model misspecification for model and parameter

testing. Under the full rank assumption on the X matrix, the focus of the analysis is on the fixed

(global) type of misspecification considered in Shanken and Zhou (2007) and several follow-up

papers. A beta-pricing model is misspecified if there exists no value of the risk premia Γ for which

the associated vector of pricing errors is zero. This misspecification might be due, for example,

to the omission of some relevant risk factor, imperfect measurement of the factors, or failure to

incorporate some relevant aspect of the economic environment – taxes, transaction costs, irrational

investors, and the like. Thus, misspecification of some sort seems inevitable, given the inherent

limitations of beta-pricing models.

This section is organized as follows. In Section 3.1, we propose a new specification test that

is appropriately designed to detect model misspecification of unknown form. Section 3.2 deals

with risk premia estimation and provides standard errors that are valid under potential model

misspecification. Finally, Section 3.3 explores the situation in which the beta-pricing model is

misspecified due to priced firm characteristics.

38The quantity Γ̂t−1 is well-known in empirical finance because its sample variance is routinely used to compute
the Fama and MacBeth (1973) standard errors of Γ̂.

23



3.1 Testing for model misspecification

When a beta-pricing model is correctly specified (see Assumption 1),

H0 : ei = 0 for every i = 1, 2, . . . , (54)

where ei = E[Rit] − γ0 − β′iγ1 is the population (ex ante) pricing error associated with asset i.

Denoting the vector of sample ex post pricing errors by

êP = (êP1 , . . . , ê
P
N )′ = R̄− X̂Γ̂∗, (55)

we have

êPi = R̄i − X̂iΓ̂
∗

= ei +Q′εi − X̂i

(
Γ̂∗ − ΓP

)
. (56)

Theorem 1(i) implies that, for every i,

êPi →p ei +Q′εi ≡ ePi . (57)

Eq. (57) shows that even when the ex ante pricing errors, ei, are zero, êPi will not converge in

probability to zero because T is fixed. Nonetheless, a test of H0 with correct size and good power

can be developed. Define the sum of the sample squared ex post pricing errors as

Q̂ =
1

N

N∑
i=1

(êPi )2. (58)

Consider the centered statistic

S =
√
N

(
Q̂ − σ̂2

T

(
1 + γ̂∗1

′(F̃ ′F̃ /T )−1γ̂∗1

))
. (59)

The centering is needed because of Eq. (57). To see this, from the population ex post pricing errors,

ePi , we have

1

N

N∑
i=1

(ePi )2 =
1

N

N∑
i=1

e2
i +Q′

(
1

N

N∑
i=1

εiε
′
i

)
Q+ op(1) =

1

N

N∑
i=1

e2
i + σ2Q′Q+ op(1). (60)

Therefore, even under H0 : ei = 0 for all i, the average of the population squared ex post pricing

errors will not converge to zero but rather to σ2Q′Q = σ2(1+γ∗1
′(F̃ ′F̃ /T )−1γ∗1). This is the quantity

whose consistent estimate we need to demean our test statistic by in order to obtain its limiting

distribution. The following theorem provides the limiting distribution of S under H0 : ei = 0 for

every i.
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Theorem 4 Under Eq. (54) and Assumptions 1-6, as N →∞, we have

S →d N (0,V) , (61)

where V = Z ′QUεZQ and ZQ = (Q⊗Q)− vec(M)
T−K−1Q

′Q.

Proof: See Appendix B.

The asymptotic variance of the test in Eq. (61) can be consistently estimated by replacing Q

with Q̂ and Uε with Ûε. Specifically, using Theorem 2 and Lemma 6 in Appendix A, we have

V̂ = Ẑ ′QÛεẐQ →p Z
′
QUεZQ, (62)

where

ẐQ =
(
Q̂⊗ Q̂

)
− vec(M)

T −K − 1
Q̂′Q̂. (63)

Then, under H0, it follows that

S∗ =
S
V̂

1
2

→d N (0, 1). (64)

It turns out that our test statistic S∗ has power when e2
i is greater than zero for the majority of

the test assets.39 Moreover, it is straightforward to show that the distribution of our test under

the null hypothesis is invariant to asset repackaging.

3.2 Estimation under potential model misspecification

If the null hypothesis of correct model specification, for the beta-pricing model under consideration,

is rejected, one has two options. The first possibility is to conclude that the model is wrong, and

to modify the model accordingly before proceeding with risk premia estimation. If one still wishes

to conduct inference on risk premia with the same beta-pricing model, then the standard errors of

the risk premia estimates need to be robustified against potential model misspecification. This is

the approach we propose in this section. Suppose that Assumption 1 is violated and assume that

E[Rt] = 1N γ̃0 +Bγ̃1 + e, (65)

39Specifically, our test will reject H0 when the pricing errors ei are zero for only a number N0 of assets, such that
N0/N → 0 as N → ∞. This condition allows N0 to diverge, although not too fast. A formal power analysis can
be developed by using the notion of local alternatives as in Gagliardini et al. (2016). In the Internet Appendix, we
present a Monte Carlo simulation experiment calibrated to real data that demonstrates the desirable size and power
properties of our test.
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where, following Shanken and Zhou (2007), the (pseudo)-true values Γ̃ = [γ̃0, γ̃
′
1]′ are given by

Γ̃ = argminC
(E[Rt]−XC)′(E[Rt]−XC)

N
, for an arbitrary (K + 1)-vector C. (66)

When the model is correctly specified, Γ̃ = Γ, the vector of ex ante risk premia.40

We now introduce an additional assumption that governs the behavior of the population pricing

errors in terms of cross-sectional moments with the returns’ innovations.

Assumption 7 As N →∞, we have

(i)

1

N

N∑
i=1

εiei →p 0. (67)

(ii)

1

N

N∑
i=1

εiε
′
ie

2
i →p τΩIT . (68)

(iii)

1

N

N∑
i=1

εiε
′
iei →p τΦIT . (69)

(iv)

N∑
i,j=1

| σijeiej | 1{i 6=j} = o (N) , (70)

for some constants τΩ = plim 1
N

∑N
i=1 ε

2
ite

2
i and τΦ = plim 1

N

∑N
i=1 ε

2
itei.

Assumption 7(i) implies that the εit and the pricing errors are cross-sectionally uncorrelated, al-

though, by Assumption 7(ii) and 7(iii), they could be cross-sectionally dependent in terms of second

moments of the εit. Assumption 7(iv) implies that the pricing errors are not altering the degree of

cross-sectional dependence of the εit.

40Under the i.i.d. normality assumption and Eq. (65), Shanken and Zhou (2007) establish the asymptotic distri-
bution of the OLS and GLS CSR estimators of Γ̃ as T →∞. (See also Hou and Kimmel (2006).) Kan et al. (2013)
generalize their results to the case of temporally dependent and nonnormal test asset returns and factors, and derive
the large-T distribution of the OLS and GLS CSR R2.
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Let Γ̃P = Γ̃+ f̄−E[ft]. The following theorem extends Theorems 1 and 2 to the case of globally

misspecified beta-pricing models.

Theorem 5 As N →∞, we have

(i) Under Assumptions 2-5, Assumption 7, and Eq. (65),

Γ̂∗ − Γ̃P = Op

(
1√
N

)
. (71)

(ii) Under Assumptions 2-7 and Eq. (65),

√
N
(

Γ̂∗ − Γ̃P
)
→d N

(
0K+1, V + Σ−1

X

(
W + Ω + Φ + Φ′

)
Σ−1
X

)
, (72)

where V and W are defined in Theorem 1 by replacing γP1 with γ̃P1 ,

Ω =

[
0 0′K

0K τΩP ′P

]
and Φ =

[
0 τΦQ

′P

0K τΦ (Q′ ⊗ µβ)P

]
. (73)

(iii) Under Assumptions 2-5, Assumption 7, Eq. (65), and κ4 = 0,

V̂ +
(

Σ̂X − Λ̂
)−1

(Ŵ + Ω̂ + Φ̂ + Φ̂′)
(

Σ̂X − Λ̂
)−1
→p V + Σ−1

X (W + Ω + Φ + Φ′)Σ−1
X , (74)

where V̂ and Ŵ are defined in Theorem 2,

Ω̂ =

[
0 0′K

0K τ̂ΩP ′P

]
and Φ̂ =

 0 τ̂ΦQ
′P

0K τ̂Φ

(
Q′ ⊗ B̂′1N

N

)
P

 , (75)

and τ̂Φ and τ̂Ω are defined in Lemmas 8 and 9 in Appendix A, respectively.

Proof: See Appendix B.

Similar to the expressions in Shanken and Zhou (2007) and Kan et al. (2013), the asymptotic

covariance of Γ̂∗ contains three additional terms, Ω, Φ, and Φ′. The contribution of the pricing errors

to the overall asymptotic covariance increases when the variability of the residuals εit increases or,

alternatively, when the variability of the pricing errors ei increases, leading to a larger τΩ.

Notice that under model misspecification Γ̃ changes with N and, as a consequence, one can

define the limit risk premia Γ̃∞ = limN→∞ Γ̃. Theorem 3 of Ingersoll (1984) provides the conditions
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for the existence and the uniqueness of Γ̃∞.41 It follows that, by Theorem 5, Γ̂∗ also converges

to Γ̃P∞ =
[
γ̃P0,∞, γ̃

P ′
1,∞

]′
= Γ̃∞ + f̄ − E[ft]. Moreover, if Γ̃ − Γ̃∞ is o

(
1/
√
N
)
, then the asymptotic

distribution of Γ̂∗ around Γ̃P∞ is the same as the one in Eq. (72).42 Interestingly, even under model

misspecification, there is no loss of speed of convergence. This differs from Gagliardini et al. (2016),

who obtain a slower rate of convergence, O
(√

N
)

instead of O
(√

NT
)
, of their estimator to the

true ex ante risk premia, Γ̃∞, when the model is misspecified.

3.3 Misspecification due to priced characteristics

We follow Section 3.3 of Shanken (1992) and allow for Assumption 1 to be potentially violated

because the cross-section of expected returns now satisfies

E[Rit] = γ0 + γ′1βi + δ′ci, (76)

where ci denotes a Kc-vector of time-invariant firm characteristics and δ denotes the corresponding

vector of characteristic premia. Our theory requires characteristics and loadings to be sufficiently

heterogenous across assets although we allow them to be (almost) arbitrarily cross-sectionally cor-

related.43 Since characteristics exhibit only modest changes over short time windows, Eq. (76)

would be a good approximation to the true data generating process also in a time-varying setting

with a small T.44

Imposing Eq. (76), averaging (2) over time, and replacing X with X̂, we obtain

R̄ = X̂ΓP + Cδ + ηP , (77)

41In particular, asymptotic no-arbitrage (see Ingersoll (1984), Eq. (7)), our Assumption 2, and boundedness of the
maximum eigenvalue of Σ imply Ingersoll’s result.

42It can be shown that (deterministic) convergence of Γ̃ to Γ̃∞ occurs at most at rate O

(
1/
√∑N

i=1 β
′
iβi

)
, which

equals O
(

1/
√
N
)

by Assumption 2, although any faster rate is allowed for in principle. Notice that if Γ̃ − Γ̃∞ is

exactly O
(

1/
√
N
)
, then we need to modify our sampling scheme and select an arbitrary, slightly smaller, set of

assets n such that n/N → 0 as N diverges. When evaluating Γ̂∗ using these n assets, then the slower O (
√
n) rate of

convergence to Γ̃P∞ is obtained.
43The case for (linear or nonlinear) dependence, whereby βi = β(ci), has been forcefully made by both the

empirical (see Connor et al. (2012), Chordia et al. (2015), and Kelly et al. (2018), among others) and theoretical
literature (see the survey in Kogan and Papanikolaou (2013)) in order to resolve the debate on systematic risk- versus
characteristic-based stories of expected returns that was spurred from the influential empirical findings of Daniel and
Titman (1997).

44Chordia et al. (2015) highlight the challenges that arise when estimating time-varying characteristic premia and
propose a bootstrap procedure to perform correct inference in this setting.
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where C = [c1, . . . , cN ]′ and ηP =
(
ε̄− (X̂ −X)ΓP

)
. The estimates of ΓP and δ are given by[

Γ̂∗

δ̂∗

]
=

[
X̂ ′X̂ −N Λ̂ X̂ ′C

C ′X̂ C ′C

]−1 [
X̂ ′R̄
C ′R̄

]
, (78)

where Λ̂ is the bias adjustment from Theorem 1. In line with the discussion around Theorem 3,

Γ̂∗ and δ̂∗ will also estimate (consistently) the local averages of the risk and characteristic premia

if these are allowed to be time-varying.

In this setting with characteristics, we need to make the following additional assumption. Let

zi = εi ⊗ ci and Σzz,ij = Cov(zi, z
′
j) = σij

[
IT ⊗ cic′j

]
.

Assumption 8 As N →∞,

(i)

µ̂C =
C ′1N
N

→p µC = [µc1, . . . , µcK ]′, a finite Kc-vector, (79)

Σ̂CC =
C ′C

N
→p ΣCC , a finite positive-definite (Kc ×Kc) matrix, (80)

Σ̂CB =
C ′B

N
→p ΣCB, a finite (Kc ×K) matrix, (81)

with positive-definite matrices

ΣCC − µCµ′C and

[
ΣCC ΣCB

Σ′CB Σβ

]
−
[
µC
µβ

] [
µC
µβ

]′
. (82)

(ii)
C ′ε′

N
→p 0(Kc×T ). (83)

(iii)

1

N

N∑
i=1

Σzz,ii → σ2(IT ⊗ ΣCC) and
N∑

i,j=1

Σzz,ij1{i 6=j} = o(N). (84)

(iv)

1√
N

N∑
i=1

zi →d N
(
0KcT , σ

2(IT ⊗ ΣCC)
)
. (85)

Since

[
ΣCC ΣCB

Σ′CB Σβ

]
−
[
µC
µβ

] [
µC
µβ

]
in Assumption 8(i) is positive-definite, then

[
ΣCC ΣCB

Σ′CB Σβ

]
is also

positive-definite, and this implies that the βi and the ci cannot be proportional.

In the next two theorems, we characterize the asymptotic properties of the estimators Γ̂∗ and

δ̂∗.
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Theorem 6 As N →∞, we have

(i) Under Assumptions 2-5 and 8, and Eq. (76),

Γ̂∗ − ΓP = Op

(
1√
N

)
, δ̂∗ − δ = Op

(
1√
N

)
. (86)

(ii) Under Assumptions 2-6 and 8, and Eq. (76),

√
N

[
Γ̂∗ − ΓP

δ̂∗ − δ

]
→d N

(
0K+Kc+1, σ

2(Q′Q)L−1 + L−1OL−1
)
, (87)

with

L =

 ΣX

[
µ′C

Σ′CB

]
[
µC ΣCB

]
ΣCC

 , O =

[ 0 0′K
0K Z ′UεZ

]
0(K+1)×Kc

0Kc×(K+1) 0Kc×Kc

 , (88)

where Q, Z, and Uε are defined in Theorem 1.

Proof: See Appendix B.

A consistent estimator of the asymptotic covariance matrix of Γ̂∗ and δ̂∗ is provided in the next

theorem.45

Theorem 7 Under Assumptions 2-5 and 8, Eq. (76), and the identification condition κ4 = 0, as

N →∞, we have

σ̂2(Q̂′Q̂)L̂−1 + L̂−1ÔL̂−1 →p σ
2(Q′Q)L−1 + L−1OL−1, (89)

with

L̂ =

 Σ̂X − Λ̂

[
µ̂′C

Σ̂′CB

]
[
µ̂C Σ̂CB

]
Σ̂CC

 , Ô =

[ 0 0′K
0K Ẑ ′ÛεẐ

]
0(K+1)×Kc

0Kc×(K+1) 0Kc×Kc

 , (90)

where σ̂2 is defined in Eq. (11), and Q̂, Ẑ, and Ûε are defined in Theorem 2.

45The proof of Theorem 7 follows the same steps of the proof of Theorem 2 and is therefore omitted.
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4. Empirical Analysis

In this section, we show empirically that the results obtained with our fixed-T and large-N method-

ology can differ substantially from the results obtained with traditional large-T and fixed-N meth-

ods. Using a large number of individual equity returns from CRSP, we estimate and test FF5 and

an extension of this model that includes the non-traded liquidity factor of Pástor and Stambaugh

(2003).46 The demonstrated empirical success of FF5 in explaining the cross-sectional variation

in expected equity returns is what motivates our interest in this model.47 In the second part

of this section, we analyze the extent to which firm characteristics contribute to explaining the

cross-section of expected equity returns.

The risk and characteristic premia estimators, their confidence intervals, and the various test

statistics employed are based on our theoretical analysis in Sections 2 and 3.

4.1 Data

The monthly data on the traded factors of FF5 is available from Kenneth French’s website and the

non-traded liquidity factor of Pástor and Stambaugh (2003) is taken from Lubos Pástor’s website.48

As for the test assets, we download monthly stock returns (from January 1966 to December 2013)

from CRSP and apply two filters in the selection of stocks. First, we require that a stock has a

Standard Industry Classification (SIC) code. (We adopt the 49 industry classifications listed on

Kenneth French’s website.) Second, we keep a stock in our sample only for the months in which its

price is at least three dollars. The resulting dataset consists of 3, 435 individual stocks. We perform

the empirical analysis using balanced panels over fixed-time windows of three and 10 years (that

is, T = 36 and 120), respectively. We obtain time series of estimated risk premia and test statistics

by shifting the time window month by month over the 1966-2013 period. After filtering the data,

we obtain an average number (over the overlapping time windows) of approximately 2, 800 stocks

46The Internet Appendix reports further empirical results for FF5, as well as results for CAPM and FF3.
47Several studies (see Kozak et al. (2018), Kelly et al. (2018), and Huang et al. (2018), among others) have shown

that these five factors are highly correlated with appropriately constructed latent factors such as the first five principal
components, and variations of, from the data.

48The five traded factors of FF5 are the market excess return (mkt), the return difference between portfolios of
stocks with small and large market capitalizations (smb), the return difference between portfolios of stocks with high
and low book-to-market ratios (hml), the average return on two robust operating profitability portfolios minus the
average return on two weak operating profitability portfolios (rmw), and the average return on two conservative
investment portfolios minus the average return on two aggressive investment portfolios (cma).
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when T = 36 and 1, 200 stocks when T = 120.

4.2 Specification testing

For the analysis with traded factors only, we report the p-values of our specification test, S∗, as well

as the p-values of two alternative tests, the Gibbons et al. (1989) (GRS) and Gungor and Luger

(2016) (GL) tests. It should be noted that GRS requires N to be fixed, while the Gungor and

Luger (2016) test is valid for any N and T. All three tests are tests of the same null hypothesis;

that is, H0 : ei = 0, for every i = 1, 2, . . . .

(i) S∗ test

We first assess the performance of FF5 using S∗.

Figure 1 about here

The black line in Figure 1 denotes the time series of p-values associated with our test statistic

S∗ for time windows of three years (top panel) and 10 years (bottom panel), respectively. When

the black line is below the 5% significance level (dotted red line), we reject FF5. Figure 1 shows

that based on our test, we reject the validity of FF5 about 60% of the times when T = 36. As

expected, the rejection of FF5 happens more frequently when we increase the time window from

T = 36 to T = 120. The rejection of FF5 occurs in about 95% of the cases when the latter scenario

is considered. Given the availability of a time series of p-values, one could cast the analysis in a

multiple testing framework, as suggested by Barras et al. (2010). Applying their methodology to

S∗, we reject the null of correct model specification in 61% and 95% of the cases for T = 36 and

T = 120, respectively. In Figure 2, we perform the same analysis for the liquidity-augmented FF5.

Figure 2 about here

This variant of FF5 turns out to be strongly rejected, even when T = 36. The rejection frequencies

are approximately equal to 82% and 92% for T = 36 and 120, respectively. Overall, the fre-

quent and strong rejections of FF5 justify our use of confidence intervals that are robust to model

misspecification in the subsequent analysis.

(ii) GRS and GL tests
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Figure 3 reports the GRS p-values (blue line) as well as the GL p-values (green line).

Figure 3 about here

Unlike ours, these two tests are only applicable to beta-pricing models with traded factors. As a

consequence, we consider only FF5 here. Since GRS is a GLS-based test, effectively, it is imple-

mentable only when N is substantially smaller than T. Therefore, we construct 25 equally weighted

portfolio returns from our individual stock returns and analyze the performance of these two tests,

using this smaller asset set.49 Differently from our large-N test, we are much less likely to reject

FF5 based on the GRS test. When considering time windows of T = 36, the average rejection rate

for FF5 is only about 30%. In addition, FF5 is rejected almost always when T = 120. We obtain

similar results when using the GL test, although it is harder to quantify the rejection rates in this

case because the GL test often leads to an inconclusive outcome. Based on the GL test, FF5 is

not rejected in about 70% of the cases when T = 36, but the test is inconclusive about 29% of the

time. Moreover, FF5 is not rejected in only about 18% of the cases when T = 120, but the test

is inconclusive about 76% of the time. The main message here is that using our test can lead to

qualitatively different conclusions relative to existing methods.

4.3 Risk premia estimates

Since our test, S∗, points to serious misspecification of the risk-return relation, in this section we

perform parameter testing by means of standard errors that are robust to model misspecification.

Specifically, we use the large-N standard errors derived in Theorems 5. To highlight the differences

between our approach and standard large-T methods, we also consider the OLS CSR estimator

and the corresponding large-T standard errors from Theorem 1(ii) in Shanken (1992). For traded

factors, we also report the rolling sample mean of the factor returns, which is a valid risk premium

estimator when T is large. In contrast, when considering non-traded factors such as liquidity, we

consider the rolling sample mean of the corresponding mimicking portfolio return. (See footnote 16

above.)

(i) FF5

49The results in Figure 3 are obtained by randomly assigning the various stocks to 25 portfolios. For instance,
when T = 36, each of the 25 portfolios contains approximately 110 randomly selected stocks. We also experimented
with 25 portfolios formed on CAPM betas. The results of the analysis are qualitatively similar to those in Figure 3.
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Based on a time window of three years, the top panel of Figure 4 presents the rolling-window

estimates of the risk premium on the market factor and the corresponding 95% confidence intervals.

(The results for the other four factors are in the Internet Appendix.)

Figure 4 about here

In the figure, the bold black line and the dotted red line refer to the Shanken (1992) and OLS

CSR estimators, respectively. The grey band represents the large-N 95% confidence intervals that

are robust to model misspecification, whereas the striped orange band is for the large-T confidence

intervals. Finally, the dashed black line displays the rolling factor sample mean. Noticeably, the

large-T confidence intervals include the zero value in about 60% of the cases. In contrast, our

large-N confidence intervals include the zero value only about 30% of the time. Not surprisingly,

the bottom panel of Figure 4 (T = 120 case) shows that the risk premia estimates are smoother

than in the T = 36 scenario. However, the large-T confidence intervals are still larger than the

corresponding large-N confidence intervals, and they indicate that the OLS CSR and the Shanken

(1992) estimates are statistically significant 30% and 80% of the time, respectively. The large-N

estimates appear to be systematically larger than the corresponding large-T estimates for most

dates, especially for the longer time window. This is the result of the systematic (negative) bias

that affects the OLS CSR estimator when N is large. The relationship between the large-N and the

rolling sample mean estimates (the latter are based on windows of T = 36 and T = 120 monthly

data, respectively) is less stable. The two sets of estimates exhibit a correlation of about 0.5 when

T = 36 and 0.7 when T = 120. Figure 4 shows that the large-T approach supports the hypothesis

of constant risk premia, whereas our large-N results point toward a significant time variation in

risk premia. Therefore, it seems plausible to interpret Γ̂∗ as the estimator of the local average, over

T periods, of the (time-varying) risk premia, Γ̄, as explained in Section 2.2.

The top panel of Figure 5 reports the Shanken (1992) large-N estimates, expressed in terms

of a single line (black line) and in terms of local averages (horizontal bars of length T = 36, blue

lines), with the corresponding 95% confidence intervals for these local averages based on the large-N

standard errors of Theorem 5 (grey band).

Figure 5 about here
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The local average estimates appear to be significantly different from each other in most cases,

which is a clear symptom of time variation in risk premia. In the same panel, we also report

the rolling sample mean (over fixed windows of six months of daily data) of the market excess

return (dashed dotted red line) and the corresponding 95% confidence interval (orange band).

As our results indicate, although the latter is a suitable (nonparametric) estimator of the time-

varying risk premium, it requires a large number of observations (over a short time window) to

produce sufficiently narrow confidence intervals. The correlation between the Shanken (1992) large-

N estimator and the six-month rolling sample mean based on daily data is positive but small (the

sample correlation coefficient is 0.14). In addition, differently from the Shanken (1992) large-N

estimator, the six-month rolling sample mean based on daily data appears to be very noisy.

Given the pronounced time variation in risk premia, the bottom panel of Figure 5 reports

our novel estimator γ̂∗1,t−1 (black line), formally defined in Eq. (50), and the corresponding 95%

confidence interval (grey band). Although noisier than γ̂∗1 , the γ̂∗1,t−1 estimates are still statistically

significant about 50% of the time. As the figure indicates, there is a sharp increase in risk premia

volatility in correspondence and in the aftermath of major economic and financial crises and episodes

such as the Black Monday of October 1987 and the US savings and loan crisis of the 80s and 90s. Our

empirical findings on risk premia counter-cyclicality confirm the results in Gagliardini et al. (2016)

and corroborate the predictions of many theoretical models. (See the discussion in Section 4.3 of

Gagliardini et al. (2016).)

(ii) Liquidity-augmented FF5

As for the liquidity-augmented FF5, Figure 6 presents the estimated liquidity risk premium in

the time-invariant setting.

Figure 6 about here

The estimated liquidity risk premia in Figure 6 are positive 55% and 37% of the time for T = 36

and T = 120, respectively. However, the risk premia estimates are statistically significant at the

5% level only in the 21% and 32% of the cases, for T = 36 and T = 120, respectively. In the

same figure, we also report the OLS CSR estimator and the corresponding mimicking portfolio

rolling sample mean (based on windows of T = 36 and T = 120 monthly data). The OLS CSR

estimates in this case are not too far from the Shanken (1992) estimates. In contrast, the rolling

35



mimicking portfolio sample means are now only mildly positively correlated with the Γ̂∗ estimates.

(The correlation coefficients are 0.15 and 0.27 for T = 36 and T = 120, respectively.)

As in the traded factor case, Figure 7 indicates that the time variation in risk premia is pro-

nounced.

Figure 7 about here

Based on the top panel of Figure 7, the correlation between the mimicking portfolio six-month

rolling sample mean and the Shanken (1992) large-N estimates is about 0.19. Similar to the FF5

case, the large-N estimator seems to exhibit a higher precision. Looking at the bottom panel of

Figure 7, the risk premia counter-cyclicality emerges again, especially around major economic and

financial downturns.

Finally, Table 1 reports the percentage difference (averaged over rolling time windows of size

T = 36 and T = 120, respectively) between the Shanken (1992) estimator, Γ̂∗, and the OLS CSR

estimator, Γ̂, for the various risk premia in CAPM, FF3, and FF5.

Table 1 about here

Panel A shows that the percentage difference between estimators is quite large (about 64% when

T = 36 and 27% when T = 120). As for FF3 in Panel B, the discrepancy between the two estimators

is sizeable for hml, ranging from 31% to 52%, and less pronounced for mkt and smb. Moreover,

relative to FF5, Panel C indicates that the percentage difference between the two estimators is

relatively large for cma, ranging from 33% to about 43%. Finally, sizeable differences between the

two estimators exist for liq, especially in Panel A.

In summary, we often find significant differences between the results based on our large-N

approach and the results based on conventional large-T methods. The difference mainly stems from

the smaller standard errors of the Shanken (1992) estimator relative to the OLS CSR estimator

and the nontrivial bias correction induced by the Shanken (1992) estimator when N is large. These

differences are even more pronounced when comparing the results based on the Shanken (1992)

estimator with those based on the rolling sample mean estimator. Finally, the estimated risk

premium on the (non-traded) liquidity factor of Pástor and Stambaugh (2003) is often found to be

statistically insignificant.
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4.4 Characteristics

In this section, for ease of comparison with Chordia et al. (2015), we use balanced panel data from

January 1980 to December 2015.50 In the dataset we use, an average of 3,071 firms have return

data in a particular month. Consistent with Daniel and Titman (1997) and Chordia et al. (2015),

among others, we focus on five firm characteristics that have often been found to be related to

the cross-section of expected returns: book-to-market ratio (B/M), asset growth (ASSGR), oper-

ating profitability (OPERPROF ), market capitalization (MCAPIT ), and six-month momentum

(MOM6). As it is common in this literature, we cross-sectionally standardize the characteristics.

In the interest of space, we focus only on the T = 36 case. For each time window, we compute

the average of the characteristics. In the first pass, we obtain beta estimates for CAPM, FF3,

and FF5. We then estimate the ex post risk and characteristic premia using our second-pass CSR

estimator in Eq. (78). Figure 8 reports the time series of the characteristic premia estimates, δ̂∗,

and the 95% confidence intervals for each model.

Figure 8 about here

Although the confidence intervals tend to widen when moving from CAPM to FF5, averaging across

the three models, the estimated B/M premium is positive about 59% of the time, but it is only

statistically significant at the 5% level in about 3% of the cases. The estimated ASSGR premium is

almost always negative (in 81% of the cases) and significantly so about 16% of the time, whereas the

estimated OPERPROF premium is positive in about 32% of the cases and statistically significant

only about 19% of the time. For MCAPIT, the estimated premium is positive 32% of the time

and statistically significant in about 12% of the cases, while the MOM6 estimate is almost always

positive (99.6% of the time) and significant in 86% of the cases.

We now analyze the joint importance of the five characteristics in explaining deviations from

correct model specification; that is, we assess whether the expected returns on individual stocks

represent a compensation for risk or firm characteristics. We consider two alternative approaches.

First, we conduct formal tests of the two hypotheses, H0 : γP1 = 0K and H0 : δ = 0Kc using

the asymptotic distribution theory in Theorems 6 and 7. The results are in Panel A of Table 2.

The F -tests indicate that the characteristic premia estimates are statistically significant at any

50We thank Alberto Mart́ın-Utrera for sharing his data with us and refer to DeMiguel et al. (2018) for data details.
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conventional level, with the average F -test (over rolling windows of size T = 36) for the null

hypothesis H0 : δ = 0Kc being equal to 1278.60, 1108.41, and 927.04 for CAPM, FF3, and FF5,

respectively. In contrast, the average F -test for the null hypothesis H0 : γP1 = 0K equals 12.45,

17.19, and 57.18 for CAPM, FF3, and FF5, respectively, with rejections rates, in the order, of

25.70%, 25.90%, and 37.90%.

Next, Panel B of Table 2 presents the cross-sectional variance contribution of betas and charac-

teristics to the overall cross-sectional dispersion in the (sample) average returns, R̄i. Chordia et al.

(2015) suggest to consider the ratios of the (cross-sectional) variance of the beta component (betas

times the factor risk premia) and of the characteristics component (characteristics times the charac-

teristic premia), with respect to the overall (cross-sectional) variance of average returns. However,

since the beta and characteristics components are not orthogonal cross-sectionally, this can lead

to a percentage of the cross-sectional variance explained by the betas and by the characteristics

that is jointly greater than 100%.51 In addition, the estimated pricing errors based on our bias-

adjusted estimator are not necessarily orthogonal to the regressors of the CSR, thus complicating

the interpretation even further.

We modify the approach of Chordia et al. (2015) as follows. From the estimated CSR, we have

R̄ = X̂Γ̂∗ + Cδ̂∗ + η̂P , where η̂P are the sample counterparts of ηP in Eq. (77). Consider the

orthogonalization of the estimated pricing errors, η̂P ,

R̄ = X̂Γ̂∗ + Cδ̂∗ + PẐ η̂
P + (IN − PẐ)η̂P

≡ X̂Γ̂∗ + Cδ̂∗ + PẐ η̂
P + η̂∗P , (91)

where PẐ = Ẑ(Ẑ ′Ẑ)−1Ẑ ′ with Ẑ = [X̂, C], and IN denotes the identity matrix of order N. By

construction, the orthogonalized estimated pricing errors, η̂∗P = (IN − PẐ)η̂P , satisfy Ẑ ′η̂∗P =

0K+Kc+1. Setting PC = C(C ′C)−1C ′, rewrite the estimated CSR as

R̄ =
(
X̂Γ̂∗ + PẐ η̂

P
)

+ Cδ̂∗ + η̂∗P

=
[
(IN − PC)

(
X̂Γ̂∗ + PẐ η̂

P
)]

+
[
PC

(
X̂Γ̂∗ + PẐ η̂

P
)

+ Cδ̂∗
]

+ η̂∗P

≡ R̄⊥C + R̄C + η̂∗P , (92)

where R̄⊥C ≡ (IN − PC)
(
X̂Γ̂∗ + PẐ η̂

P
)

is the component of the average returns that is explained

only by the estimated betas, and thus (perfectly) uncorrelated with C in sample, and R̄C ≡
51This problem is acknowledged, although not solved, in Chordia et al. (2015).
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PC

(
X̂Γ̂∗ + PẐ η̂

P
)

+ Cδ̂∗ is the component of the average returns due to C only. Since R̄⊥C and

R̄C are orthogonal to each other and to η̂∗P , the sample variance of the average returns equals the

sum of the sample variances of the beta component, of the characteristics component, and of the

orthogonalized pricing errors, that is,

S2
R̄ =

R̄′R̄

N
−
(

1′N R̄

N

)2

=
(R̄′⊥CR̄⊥C

N
− (

1′N R̄⊥C
N

)2
)

+
(R̄′CR̄C

N
− (

1′N R̄C
N

)2
)

+
η̂∗P

′
η̂∗P

N

≡ S2
R̄⊥C

+ S2
R̄C

+ S2
η̂∗P . (93)

Panel B of Table 2 reports the average, over rolling windows of size T = 36, of the variance ratios

100× S2
R̄C
/S2

R̄
and 100× S2

R̄⊥C
/S2

R̄
.

Table 2 about here

The results are largely supportive of our findings based on the F -tests; that is, characteristics over-

whelmingly dominate the cross-sectional variation in average individual stock returns. Averaging

across the three beta-pricing models, the characteristic variance ratio, 100 × S2
R̄C
/S2

R̄
, is about

76%, whereas the beta variance ratio, 100 × S2
R̄⊥C

/S2
R̄
, is about 2.8%. The rest (about 21.5%)

represents the unexplained portion of the average return cross-sectional variance.52 Overall, our

empirical findings support the conclusions of Chordia et al. (2015), who argue that regardless of

the beta-pricing model and whether the premia are allowed to be time-varying, it is mainly the

characteristics that contribute to the cross-sectional variation in expected stock returns.

5. Conclusion

This paper is concerned with estimation of risk premia and testing of beta-pricing models when

the data is available for a large cross-section of securities, N, but only for a fixed number of

time periods, T. Since in this context the traditional OLS CSR estimator of the risk premia is

asymptotically biased and inconsistent, we provide a new methodology built on the appealing

bias-adjusted estimator of the ex post risk premia proposed by Shanken (1992). We establish its

consistency and asymptotic normality for the baseline case of correctly specified beta-pricing models

with constant risk premia, and then extend our setting to deal with time-varying risk premia. We

52Confidence intervals for these variance ratios could be computed based on our asymptotic results. The details
are available upon request.
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also explore in detail the case of misspecified beta-pricing models. We derive a new specification

test and its large-N properties, and we then show how to robustify the asymptotic standard errors

of the risk premia estimator when the beta-pricing relation is violated. The important case of

misspecification due to priced firm characteristics is considered. Finally, we analyze the case of

unbalanced panels.

We apply our large-N methodology to empirically investigate the performance of some promi-

nent beta-pricing specifications using individual stock return data, that is, the monthly returns

(from CRSP) on about 3,500 individual stocks for the January 1966 – December 2013 period. We

consider three beta-pricing models: the CAPM, the three-factor model of Fama and French (1993),

and the five-factor model of Fama and French (2015). We also augment these models with the

(non-traded) liquidity factor of Pástor and Stambaugh (2003).

Our large-N test often rejects the Fama and French (2015) model, with and without the liquidity

factor, at conventional significance levels even for short time windows of three years. In contrast,

when using a suitable aggregation of the same data, in most cases we are unable to reject the

Fama and French (2015) model using the traditional large-T methodologies. Similar conclusions

hold when testing the validity of the CAPM and the Fama and French (1993) three-factor model,

with and without the liquidity factor. The empirical rejection of these models suggests that the

misspecification-robust standard errors derived in this paper should be employed when performing

inference on risk premia.

Turning to estimation, our results indicate that all the traded-factor risk premia estimates are

statistically significant most of the time, even over short time windows of three years. In contrast,

the (non-traded) liquidity factor is often not priced. We also provide evidence of significant time

variation in risk premia for both traded and non-traded factors. Our overall evidence of pricing

is at odds with the results obtained using the traditional approach based on the large-T Shanken

(1992) standard errors.

Finally, allowing for characteristics in the risk-return relation, we find that the book-to-market

ratio, asset growth, operating profitability, market capitalization, and six-month momentum explain

most of the cross-sectional variation in estimated expected stock returns. Monte Carlo simulations

(in the Internet Appendix) corroborate our theoretical findings, both in terms of estimation and in

terms of testing of the beta-pricing restriction.
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Appendix A: Lemmas

Lemma 1 Under Assumptions 3-5,

σ̂2 − σ2 = Op

(
1√
N

)
. (A.1)

Proof. Rewrite σ̂2 − σ2 as

σ̂2 − σ2 =

(
σ̂2 − 1

N

N∑
i=1

σ2
i

)
+

(
1

N

N∑
i=1

σ2
i − σ2

)

=

(
σ̂2 − 1

N

N∑
i=1

σ2
i

)
+ o

(
1√
N

)
(A.2)

by Assumption 5(i). Moreover,

σ̂2 − 1

N

N∑
i=1

σ2
i =

tr (Mεε′)

N(T −K − 1)
− tr (M)

T −K − 1

1

N

N∑
i=1

σ2
i

=
tr
(
P
(∑N

i=1 σ
2
i IT − εε′

))
N (T −K − 1)

+
tr (εε′)− T

∑N
i=1 σ

2
i

N(T −K − 1)
. (A.3)

As for the second term on the right-hand side of Eq. (A.3), we have

tr (εε′)− T
∑N

i=1 σ
2
i

N(T −K − 1)
=

∑N
i=1

∑T
t=1

(
ε2it − σ2

i

)
N(T −K − 1)

= Op

(
1√
N

√
T

(T −K − 1)

)
= Op

(
1√
N

)
. (A.4)

As for the first term on the right-hand side of Eq. (A.3), we have

tr
(
P
(∑N

i=1 σ
2
i IT − εε′

))
N (T −K − 1)

=

∑T
t=1 dt (D′D)−1D′

(∑N
i=1 σ

2
i ıt,T −

∑N
i=1 εiεit

)
N(T −K − 1)

=

∑T
t=1 pt

(∑N
i=1 σ

2
i ıt,T −

∑N
i=1 εiεit

)
N(T −K − 1)

, (A.5)

where ıt,T is a T -vector with one in the t-th position and zeros elsewhere, dt is the t-th row of

D = [1T , F ], and pt = dt (D′D)−1D′. Since Eq. (A.5) has a zero mean, we only need to consider
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its variance to determine the rate of convergence. We have

Var

∑T
t=1 pt

(∑N
i=1 σ

2
i ıt,T −

∑N
i=1 εiεit

)
N(T −K − 1)


=

1

N2(T −K − 1)2
E

 N∑
i,j=1

T∑
t,s=1

pt
(
σ2
i ıt,T − εiεit

) (
σ2
j ıs,T − εjεjs

)′
p′s


=

1

N2(T −K − 1)2

N∑
i,j=1

T∑
t,s=1

ptE
[(
σ2
i ıt,T − εiεit

) (
σ2
j ıs,T − εjεjs

)′]
p′s. (A.6)

Moreover, we have

E
[(
σ2
i ıt,T − εiεit

) (
σ2
j ıs,T − εjεjs

)′]
= E

[
σ2
i σ

2
j ıt,T ı

′
s,T + εiε

′
jεitεjs − σ2
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′
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s,T

]
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′
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i

(
IT − 2ıt,T ı

′
t,T
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if i = j, t = s
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′
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(A.7)

It follows that
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(A.8)
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by Assumptions 5(ii), 5(iii), 5(iv), and 5(viii), which implies that the first term on the right-hand

side of Eq. (A.3) is Op

(
1√
N

)
. Putting the pieces together concludes the proof. �

Lemma 2 Let

Λ =

[
0 0′K

0K σ2(F̃ ′F̃ )−1

]
. (A.9)

(i) Under Assumptions 2-5,

X̂ ′X̂ = Op(N). (A.10)

In addition, under Assumption 6,

(ii)

Σ̂X →p ΣX + Λ, (A.11)

and

(iii)

(X̂ −X)′(X̂ −X)

N
→p Λ. (A.12)

Proof.

(i) Consider

X̂ ′X̂ =

 N 1′N B̂

B̂′1N B̂′B̂

 . (A.13)

Then,

B̂′1N =
N∑
i=1

β̂i =
N∑
i=1

βi + P ′
N∑
i=1

εi. (A.14)

Under Assumptions 4-5,

Var
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43



Using Assumption 2, we have

B̂′1N = Op

(
N +

(
N
T

) 1
2

)
= Op(N). (A.16)

Next, consider

B̂′B̂ =
N∑
i=1

β̂iβ̂
′
i

=
N∑
i=1

(
βi + P ′εi

) (
βi
′ + εi

′P
)

=
N∑
i=1

βiβi
′ + P ′

(
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εiεi
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)
P

+P ′
(
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i=1

εiβi
′

)
+

(
N∑
i=1

βiεi
′

)
P. (A.17)

By Assumption 2,

N∑
i=1

βiβi
′ = O(N). (A.18)

Using similar arguments as for Eq. (A.15),

P ′
(

N∑
i=1

εiβi
′

)
= Op

((
N

T

) 1
2

)
(A.19)

and (
N∑
i=1

βiεi
′

)
P = Op

((
N

T

) 1
2

)
. (A.20)

For P ′
(∑N

i=1 εiεi
′
)
P, consider its central part and take the norm of its expectation. Using
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Assumptions 4-5,
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Then, we have

P ′
(

N∑
i=1

εiεi
′

)
P = Op

(
N

T

)
(A.22)

and

B̂′B̂ = Op

(
N +

(
N

T

) 1
2

+
N

T

)
= Op(N). (A.23)

This concludes the proof of part (i).

(ii) Using part (i) and under Assumptions 3-6, we have

N−1B̂′1N =
1

N

N∑
i=1

βi +Op

(
1√
N

)
(A.24)
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and

N−1B̂′B̂ =
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

εiε
′
i

)
P + P ′

(
1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

εiε
′
i −

1

N

N∑
i=1

σ2
i IT +

1

N

N∑
i=1

σ2
i IT − σ2IT + σ2IT

)
P

+P ′
(

1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

(
εiε
′
i − σ2

i IT
))
P +

1

N

N∑
i=1

(
σ2
i − σ2

)
P ′P + σ2P ′P

+P ′
(

1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + σ2P ′P +Op

(
1√
N

)
+ o

(
1√
N

)
+Op

(
1√
N

)
+Op

(
1√
N

)
.

(A.25)

Assumption 2 concludes the proof of part (ii).

(iii) Note that

(X̂ −X)′(X̂ −X)

N
=

1

N

[
0′N

(B̂ −B)′

]
[0N , (B̂ −B)]

=

[
0 0′K

0K P ′ εε′N P

]
. (A.26)

As in part (ii) we can write

εε′

N
=

1

N

N∑
i=1

(
εiε
′
i − σ2

i IT
)

+

(
1

N

N∑
i=1

(
σ2
i − σ2

))
IT + σ2IT . (A.27)

Assumptions 5(i) and 6(ii) conclude the proof since

P ′ εε
′

N
P = σ2P ′P +Op

(
1√
N

)
+ o

(
1√
N

)
.� (A.28)

Lemma 3

Under Assumptions 2-5,

X ′ε̄ = Op

(√
N
)
. (A.29)
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Proof. We have

X ′ε̄ =
1

T

T∑
t=1

[
1′N
B′

]
εt (A.30)

and

Var

(
1

T

T∑
t=1

1′N εt

)
=

1

T 2

T∑
t,s=1

N∑
i,j=1

E[εitεjs]

≤ 1

T 2

T∑
t=1

N∑
i,j=1

|σij |

= O

(
NT

T 2
σ2

)
= O (N) . (A.31)

Moreover, using Assumptions 2 and 5(ii),

Var

(
1

T

T∑
t=1

B′εt

)
=

1

T 2

T∑
t,s=1

N∑
i,j=1

E[εitεjs]βiβ
′
j

≤ 1

T 2

T∑
t=1

N∑
i,j=1

|βiβ′j ||σij |

= O

(
NT

T 2
σ2

)
= O (N) . (A.32)

Putting the pieces together, X ′ε̄ = Op

(√
N
)

. �

Lemma 4

Under Assumptions 3-5,

(X̂ −X)′XΓP = Op

(√
N
)
. (A.33)

Proof. We have

(X̂ −X)′XΓP =

[
0′N
P ′ε

]
XΓP . (A.34)

Using similar arguments to Eq. (A.15) concludes the proof. �

Lemma 5

Under Assumptions 3-5,

(X̂ −X)′ε̄ = Op

(√
N
)
. (A.35)
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Proof.

(X̂ −X)′ε̄ =

[
0
P ′εε̄

]
=

[
0

P ′εε′ 1TT

]
=

[
0

P ′
[(
εε′ −

∑N
i=1 σ

2
i IT

)
+
(∑N

i=1 σ
2
i −Nσ2

)
IT

]
1T
T

]
= Op(

√
N)

(A.36)

by Assumption 5. �

Lemma 6 Under Assumption 5 and the identification assumption κ4 = 0, we have

σ̂4 →p σ4. (A.37)

Proof. We need to show that (i) E(σ̂4)→ σ4 and (ii) Var(σ̂4) = O
(

1
N

)
.

(i) By Assumptions 5(iv), 5(vi), and 5(vii), we have

E

[
1

N

T∑
t=1

N∑
i=1

ε̂4it

]
=

1

N

T∑
t=1

N∑
i=1

E
[
ε̂4it
]

=
1

N

T∑
t=1

N∑
i=1

T∑
s1,s2,s3,s4=1

mts1mts2mts3mts4E [εis1εis2εis3εis4 ]

=
1

N

T∑
t=1

N∑
i=1

κ4,iiii

T∑
s=1

m4
ts + 3

1

N

T∑
t=1

N∑
i=1

σ4
i

(
T∑
s=1

m2
ts

)2

→ κ4

T∑
t=1

T∑
s=1

m4
ts + 3σ4

T∑
t=1

(
T∑
s=1

m2
ts

)2

, (A.38)

where ε̂it = ı′t,TMεi and M = [mts] for t, s = 1, . . . , T . Note that

T∑
s=1

m2
ts = ||mt||2

= i′tMit

= i′t
(
IT −D(D′D)−1D′

)
it

= 1− tr
(
D(D′D)−1D′iti

′
t

)
= 1− tr

(
Piti

′
t

)
= 1− ptt

= mtt, (A.39)
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where ptt is the (t, t)-element of P . Then, we have

T∑
t=1

(
T∑
s=1

m2
ts

)2

=

T∑
t=1

m2
tt = tr

(
M (2)

)
. (A.40)

By setting κ4 = 0, it follows that

E [σ̂4] → σ4. (A.41)

This concludes the proof of part (i).

(ii) As for the variance of σ̂4, we have

Var

(
1

N

N∑
i=1

T∑
t=1

ε̂4it

)
=

1

N2

N∑
i,j=1

T∑
t,s=1

Cov
(
ε̂4it, ε̂

4
js

)
=

1

N2

N∑
i,j=1

T∑
t,s=1

T∑
u1,u2,
u3,u4=1

T∑
v1,v2,
v3,v4=1

mtu1mtu2mtu3mtu4msv1msv2msv3msv4

×Cov (εiu1εiu2εiu3εiu4 , εjv1εjv2εjv3εjv4)

=
1

N2

N∑
i,j=1

T∑
t,s=1

T∑
u1,u2,
u3,u4=1

T∑
v1,v2,
v3,v4=1

mtu1mtu2mtu3mtu4msv1msv2msv3msv4

×

(
κ8 (εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2 , εjv3 , εjv4)

+

(6,2)∑
κ6 (εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2) Cov (εjv3 , εjv4)

+

(4,4)∑
κ4 (εiu1 , εiu2 , εjv1 , εjv2)κ4 (εiu3 , εiu4 , εjv3 , εjv4)

+

(4,2,2)∑
κ4 (εiu1 , εiu2 , εjv1 , εjv2) Cov (εiu3 , εiu4) Cov (εjv3 , εjv4)

+

(2,2,2,2)∑
Cov (εiu1 , εiu2) Cov (εiu3 , εjv1) Cov (εiu4 , εjv2) Cov (εjv3 , εjv4)

)
,

(A.42)

where κ4 (·), κ6 (·), and κ8 (·) denote the fourth-, sixth-, and eighth-order mixed cumulants,

respectively. By
∑(ν1,ν2,...,νk) we denote the sum over all possible partitions of a group of

K random variables into k subgroups of size ν1, ν2, . . . , νk, respectively. As an example,

consider
∑(6,2).

∑(6,2) defines the sum over all possible partitions of the group of eight

49



random variables {εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2 , εjv3 , εjv4} into two subgroups of size six and

two, respectively. Moreover, since E [εit] = E
[
ε3it
]

= 0, we do not need to consider further

partitions in the relation above.53 Then, under Assumptions 5(i), 5(ii), 5(v), and 5(viii), it

follows that

Var

(
1

N

N∑
i=1

T∑
t=1

ε̂4it

)
= O

(
1

N

)
(A.43)

and Var (σ̂4) = O
(

1
N

)
. This concludes the proof of part (ii). �

Lemma 7 Let w = [w1, . . . , wT ]′ and s = [s1, . . . , sT ]′ be two arbitrary T -vectors. Then, under

Eq. (65) and Assumptions 2-7,

1

N(T −K)

N∑
i=1

ε̂′iε̂i

T∑
k=1

wkεki

T∑
r=1

srεri →p
tr (M (S1 + S2))

(T −K)
, (A.44)

where S1 = diag
[
(s1w1µ4 + σ4

∑T
k 6=1wksk), . . . , (sTwTµ4 + σ4

∑T
k 6=T wksk)

]
and

S2 = σ4 (ws′ + sw′ − 2diag(w1s1, . . . , wT sT )) .

Proof. Note that

1

N(T −K)

N∑
i=1

ε̂′iε̂i

T∑
k=1

εki

T∑
r=1

srεri =

=
1

N(T −K)
tr

(
M

(
N∑
i=1

εiε
′
i

(
T∑

k=r=1

wkskε
2
ki +

T∑
r>k

wksrεikεir +

T∑
r<k

wksrεikεir

)))
.

(A.45)

For the first term of Eq. (A.45),

1

N(T −K)
tr

(
M

(
N∑
i=1

εiε
′
i

T∑
k=r=1

wkskε
2
ki

))
=

1

(T −K)
tr

(
M

(
1

N

N∑
i=1

T∑
k=r=1

εiε
′
iwkskε

2
ki

))

→p
1

(T −K)
tr (MS1) , (A.46)

where

S1 = plim
1

N

N∑
i=1

T∑
k=r=1

εiε
′
iwkskε

2
ki = diag

(s1w1µ4 + σ4
T∑
k 6=1

wksk), . . . , (sTwTµ4 + σ4
T∑

k 6=T
wksk)

 .
(A.47)

53According to the theory on cumulants (Brillinger (2001)), evaluation of Cov (εiu1εiu2εiu3εiu4 , εjv1εjv2εjv3εjv4)
requires considering the indecomposable partitions of the two sets, {εiu1 , εiu2 , εiu3 , εiu4} and {εjv1 , εjv2 , εjv3 , εjv4},
meaning that there must be at least one subset that includes an element of both sets.
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For the second and third terms of Eq. (A.45), we obtain

1

N(T −K)
tr

(
M

(
N∑
i=1

εiε
′
i

(
T∑
r>k

wksrεikεir +
T∑
r<k

wksrεikεir

)))

=
1

(T −K)
tr

(
M

(
1

N

N∑
i=1

T∑
r>k

εiε
′
iwksrεikεir +

1

N

N∑
i=1

T∑
r<k

εiε
′
iwksrεikεir

))

→p
1

(T −K)
tr(MS2), (A.48)

where

S2 = plim

(
1

N

N∑
i=1

T∑
r>k

εiε
′
iwksrεikεir +

1

N

N∑
i=1

T∑
r<k

εiε
′
iwksrεikεir

)
= σ4

(
ws′ + sw′ − 2diag(w1s1, . . . , wT sT )

)
.� (A.49)

Lemma 8 Let τ̂Φ = 1
N(T−K)

∑N
i=1 ε̂

′
iε̂iê

P
i . Then, under Eq. (65) and Assumptions 2-7,

τ̂Φ →p τΦ. (A.50)

Proof. Given

êPi = R̄i − X̂ ′iΓ̂∗

= X ′iΓ̃
P + ei + ε̄i − X̂ ′iΓ̂∗

= ei + ε̄i − (X̂i −Xi)
′Γ̃P − X̂ ′i(Γ̂∗ − Γ̃P ), (A.51)

using the fact that ε̂i = Mεi and Eq. (A.51), we can write

τ̂Φ =
1

N(T −K)

N∑
i=1

ε̂′iε̂iê
P
i =

1

N(T −K)

N∑
i=1

ε′iMMεiêi

=
1

N(T −K)

N∑
i=1

tr(Mε′iεi)(ei + ε̄i − (X̂i −Xi)
′Γ̃P − X̂ ′i(Γ̂∗ − Γ̃P ))

=
1

N(T −K)

N∑
i=1

tr(Mε′iεiei) + op(1)→p
1

(T −K)
tr (MτΦ) = τΦ.� (A.52)

Lemma 9 Let

τ̂Ω =
1

N(T −K)

N∑
i=1

ε̂′iε̂i(ê
P
i )2 − σ4

T

(
1 +

2tr(M1T 1′T )

T (T −K)

)
− tr(MSF )

(T −K)
+ 2

tr(MCF )

T (T −K)
, (A.53)
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where

SF = σ4


A′
(

3f̃1f̃
′
1 +

∑T
t6=1 f̃tf̃

′
t

)
A 2A′f̃1f̃

′
2A · · · 2A′f̃1f̃

′
TA

2A′f̃2f̃
′
1A A′

(
3f̃2f̃

′
2 +

∑T
t6=2 f̃tf̃

′
t

)
· · · 2A′f̃2f̃

′
TA

...
...

. . .
...

2A′f̃T f̃
′
1A 2A′f̃T f̃

′
2A · · · A′

(
3f̃1f̃

′
1 +

∑T
t6=T f̃T f̃

′
T

)
A


(A.54)

and

CF = σ4



3f̃ ′1A+
∑T

t6=1 f̃
′
tA (f̃1 + f̃2)′A · · · (f̃1 + f̃T )′A

(f̃2 + f̃1)′A 3f̃ ′2A+
∑T

t6=2 f̃
′
tA · · · (f̃2 + f̃T )′A

...
...

. . .
...

(f̃T + f̃1)′A (f̃T + f̃2)′A · · · 3f̃ ′TA+
∑T

t6=T f̃
′
tA


, (A.55)

with A = (F̃ ′F̃ )−1γ̃P1 . Then, under Eq. (65) and Assumptions 2-7,

τ̂Ω →p τΩ. (A.56)

Proof: By Eq. (A.51), we have

(êPi )2 = e2
i + ε̄2i +

(
(β̂i − βi)′γ̃P1

)2
+
(

[1, β̂′i](Γ̂
∗ − Γ̃P )

)2

+ 2ei

(
ε̄i − (β̂i − βi)′γ̃P1 − [1, β̂′i](Γ̂

∗ − Γ̃P )
)

+ 2ε̄i

(
−(β̂i − βi)′γ̃P1 − [1, β̂′i](Γ̂

∗ − Γ̃P )
)

+ 2(β̂i − βi)′γ̃P1 [1, β̂′i](Γ̂
∗ − Γ̃P ). (A.57)

Then,
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τ̂Ω =
1

N(T −K)

N∑
i=1

ε̂′iε̂i(ê
P
i )2

=
1

N(T −K)

N∑
i=1

ε̂′iε̂ie
2
i +

1

N(T −K)

N∑
i=1

ε̂′iε̂iε̄
2
i +

1

N(T −K)

N∑
i=1

ε̂′iε̂i

(
(β̂i − βi)′γ̃P1

)2

− 2
1

N(T −K)

N∑
i=1

ε̂′iε̂iε̄i(β̂i − βi)′γ̃P1 + op(1), (A.58)

where all terms involving (Γ̂∗ − Γ̃P ) are condensed into the op(1) term. By Assumption 7, the first

term in Eq. (A.58) satisfies

1

N(T −K)

N∑
i=1

ε̂′iε̂ie
2
i =

1

(T −K)
tr

(
M

1

N

N∑
i=1

εiε
′
i.e

2
i

)
→p

1

(T −K)
tr(MτΩ) = τΩ. (A.59)

For the second term in Eq. (A.58), we have

1

N(T −K)

N∑
i=1

ε̂′iε̂iε̄
2
i =

1

T 2

1

N(T −K)

N∑
i=1

ε̂′iε̂i

T∑
t=1

εit

T∑
s=1

εis. (A.60)

Then, applying Lemma 7 with w = s = [1, . . . , 1]′, we have

1

T 2

1

N(T −K)

N∑
i=1

ε̂′iε̂i

T∑
t=1

εit

T∑
s=1

εis →p
σ4

T

(
1 +

2tr(M1T 1′T )

T (T −K)

)
. (A.61)

For the third term in Eq. (A.58), we have

1

N(T −K)

N∑
i=1

ε̂′iε̂i

(
(β̂i − βi)′γ̃P1

)2
=

1

N(T −K)

N∑
i=1

ε̂′iε̂i

T∑
t=1

γ̃P
′

1 (F̃ ′F̃ )−1ftεit

T∑
s=1

γ̃P
′

1 (F̃ ′F̃ )−1fsεis,

(A.62)

and by Lemma 7 with w = s =
[
γ̃P
′

1 (F̃ ′F̃ )−1f1, . . . , γ̃
P ′
1 (F̃ ′F̃ )−1fT

]′
, one obtains

1

N(T −K)

N∑
i=1

ε̂′iε̂i

(
(β̂i − βi)′γ̃P1

)2
→p

tr(MSF )

(T −K)
. (A.63)

Finally, for the fourth term in Eq. (A.58), rewriting it as

−2
1

N(T −K)

N∑
i=1

ε̂′iε̂iε̄i(β̂i − βi)′γ̃P1 = −2
1

NT (T −K)

N∑
i=1

ε̂′iε̂i

T∑
t=1

εit

T∑
s=1

εisf̃
′
s(F̃

′F̃ )−1γ̃P1 ,

(A.64)
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and applying again Lemma 7 with w = [1, . . . , 1]′ and s = [A′f̃1, . . . , A
′f̃T ]′, we obtain

−2
1

N(T −K)

N∑
i=1

ε̂′iε̂iε̄i(β̂i − βi)′γ̃P1 →p −2
tr(MCF )

T (T −K)
.� (A.65)

Appendix B: Proofs of Propositions and Theorems

Proof of Proposition 1. Consider the class of additive bias-adjusted estimators Γ̂bias−adj for ΓP :

Γ̂bias−adj = Γ̂ + (
X̂ ′X̂

N
)−1Λ̂Γ̂prelim = (X̂ ′X̂)−1X̂ ′R̄+ (

X̂ ′X̂

N
)−1Λ̂Γ̂prelim, (B.1)

where Γ̂prelim denotes any preliminary
√
N -consistent estimator of ΓP . Setting Γ̂bias−adj = Γ̂prelim

and rearranging terms, we obtainIK+1 −

(
X̂ ′X̂

N

)−1 [
0 0′K

0K σ̂2(F̃ ′F̃ )−1

] Γ̂bias−adj = (X̂ ′X̂)−1X̂ ′R̄, (B.2)

which implies that

Γ̂bias−adj =
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N
= Γ̂∗.� (B.3)

Proof of Proposition 2. By means of simple calculations, Σ = λλ′ + σ2
ηIN . Thus,

∑N
i=1 σ

2
i /N =∑N

i=1(λ2
i + σ2

η)/N → σ2
η because

∑N
i=1 λ

2
i ≤ (

∑N
i=1 |λi|)2 = O(N2δ) = o(N). Therefore, setting

σ2 = σ2
η, one obtains

∑N
i=1(σ2

i − σ2)/N =
∑N

i=1 λ
2
i /N = (λ2

1 + · · · + λ2
q)/N +

∑N
i=q+1 λ

2
i /N =

O(N δ−1 +N2δ−1) = o(
√
N) since δ < 1/2. It follows that Assumption 5(i) is satisfied.

Next, given that σij = λiλj for i 6= j, we obtain
∑N

i 6=j=1 |σij | ≤ (
∑N

i=1 |λi|)2 = O(N2δ) = o(N),

thus satisfying Assumption 5(ii).

The maximum eigenvalue of Σ is bounded from below by the maximum eigenvalue of λλ′, which

equals λ′λ (all the other N − 1 eigenvalues of λλ′ are zero), where λ2
1 + · · ·+ λ2

q ≤ λ′λ = O(N2δ).

Therefore, the maximum eigenvalue diverges at least at rate o(
√
N). �

Proof of Proposition 3. The Fama and MacBeth (1973) standard errors with the Shanken (1992)

correction are given by

SEFMk =
(

(1 + ĉ)(Ŵk − 1{k>0}σ̂
2
k) + 1{k>0}σ̂

2
k/T

) 1
2

and SEFM,P
k =

(
(1 + ĉ)(Wk − 1{k>0}σ̂

2
k)
) 1

2
,

(B.4)
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for k = 0, . . . ,K, where Ŵk = ı′k+1,K+1

∑T
t=1(Γ̂t− ¯̂

Γ)(Γ̂t− ¯̂
Γ)′ık+1,K+1/(T − 1), Γ̂t = (X̂ ′X̂)−1X̂ ′Rt

with sample mean
¯̂
Γ, ıj,J denotes the j-th column, for j = 1, . . . , J, of the identity matrix IJ ,

ĉ = γ̂′1

(
F̃ ′F̃ /T

)−1
γ̂1, 1{} is the indicator function, and σ̂2

k denotes the (k, k)-th element of F̃ ′F̃ /T.

Consider the numerator of the t-ratios first. By Lemma 2(ii) and Lemmas 4 and 5, we obtain

Γ̂ = [γ̂0, γ̂
′
1]′ = (ΣX + Λ)−1ΣXΓP +Op

(
1√
N

)
. By the blockwise formula of the inverse of a matrix

(Magnus and Neudecker (2007), Section 1-11),

(ΣX + Λ)−1ΣXΓP =
[ 1 µ′β
µβ Σβ + C

]−1[ 1 µ′β
µβ Σβ

]
ΓP

=
[ 1 + µ′βA

−1µβ −µ′βA−1

−A−1µβ A−1

][ 1 µ′β
µβ Σβ

]
ΓP

=
[ 1 µ′β − µ′βA−1(Σβ − µβµ′β)

0 A−1(Σβ − µβµ′β)

]
ΓP . (B.5)

Then,

(ΣX + Λ)−1ΣXΓP − Γ =
[ 1 µ′β − µ′βA−1(Σβ − µβµ′β)

0 A−1(Σβ − µβµ′β)

]
ΓP − Γ

=
[ 0 µ′β(IK −A−1(Σβ − µβµ′β))

0 −(IK −A−1(Σβ − µβµ′β))

]
Γ

+
[ 1 µ′β(IK −A−1(Σβ − µβµ′β))

0 A−1(Σβ − µβµ′β)

][ 0
f̄ − E[ft]

]
. (B.6)

Hence, plim γ̂0 − γ0 = µ′β(IK − A−1(Σβ − µβµ′β))γP1 = µ′βA
−1CγP1 and, for every j = 1, . . . ,K,

plim γ̂1j−γ1j = −ı′j,K(IK−A−1(Σβ−µβµ′β))γ1+ı′j,KA
−1(Σβ−µβµ′β)(f̄−E[ft]) and plim γ̂1j−γP1j =

−ı′j,K(IK −A−1(Σβ − µβµ′β))γP1 . Consider now the behavior of the denominator of the t-ratios. It

is easy to see that Ŵ = 1
T−1

∑T
t=1(Γt − Γ̄)(Γt − Γ̄)′ = Ŵa + Ŵb + Ŵc, where

Ŵa = (X̂ ′X̂)−1X̂ ′

[
1

T − 1

T∑
t=1

(εt − ε̄)(εt − ε̄)′
]
X̂(X̂ ′X̂)−1, (B.7)

Ŵb = (X̂ ′X̂)−1X̂ ′B

[
(

1

T − 1

T∑
t=1

(ft − f̄)(ft − f̄)′

]
B′X̂(X̂ ′X̂)−1 and (B.8)

Ŵc = (X̂ ′X̂)−1X̂ ′

[∑T
t=1(εt − ε̄)(ft − f̄)′

T − 1

]
B′X̂(X̂ ′X̂)−1

+(X̂ ′X̂)−1X̂ ′B

[∑T
t=1(ft − f̄)(εt − ε̄)′

T − 1

]
X̂(X̂ ′X̂)−1. (B.9)
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Based on Lemmas 2-4 (details are available upon request), we obtain

Ŵ →pW = Wa +Wb +Wc ≡ (ΣX + Λ)−1

[
0 0′K

0K
σ4

(T−1)(F̃ ′F̃ )−1

]
(ΣX + Λ)−1

+ (ΣX + Λ)−1

[
µ′β
Σβ

][
F̃ ′F̃

T − 1

]
[µβ,Σβ] (ΣX + Λ)−1

+ (ΣX + Λ)−1 σ2

T − 1

[
0 µ′β
µβ 2Σβ

]
(ΣX + Λ)−1. (B.10)

It follows that

W =

[
0 0′K

0K
(F̃ ′F̃ )
T−1

]
. (B.11)

Therefore, since Ŵk = ı′k+1,K+1Ŵ ık+1,K+1 for k = 0, . . . ,K, we have (1 + ĉ)(Ŵk − 1{k>0}σ̂
2
k)→p 0

for any value of ĉ. It follows that SEFMk →p σ̂k/
√
T and SEFM,P

k →p 0. The proof of parts (i) and

(ii) follows from dividing γ̂0 − γ0, γ̂1k − γ1k, and γ̂1k − γP1k by SEFMk and SEFM,P
k , for the ex ante

and ex post risk premia, respectively, and then taking the limit as N →∞. �

Proof of Theorem 1. For part (i), starting from Eq. (12), we have

Γ̂∗ =
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N

=
(

Σ̂X − Λ̂
)−1 X̂ ′

N

[
X̂ΓP + ε̄− (X̂ −X)ΓP

]
=

(
Σ̂X − Λ̂

)−1
[
X̂ ′X̂

N
ΓP +

X̂ ′

N
ε̄− X̂ ′

N
(X̂ −X)ΓP

]

=
(

Σ̂X − Λ̂
)−1

(
X̂ ′X̂

N

)ΓP +

(
X̂ ′X̂

N

)−1
X̂ ′

N
ε̄−

(
X̂ ′X̂

N

)−1
X̂ ′

N
(X̂ −X)ΓP


=

IK+1 −

(
X̂ ′X̂

N

)−1

Λ̂

−1 ΓP +

(
X̂ ′X̂

N

)−1
X̂ ′

N
ε̄−

(
X̂ ′X̂

N

)−1
X̂ ′

N
(X̂ −X)ΓP

 .
(B.12)

Hence,

Γ̂∗ − ΓP =

(
X̂ ′X̂

N
− Λ̂

)−1 [
X̂ ′

N
ε̄− X̂ ′

N
(X̂ −X)ΓP + Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1

[
X̂ ′

N
ε̄−

(
X̂ ′

N
(X̂ −X)− Λ̂

)
ΓP

]

=
(

Σ̂X − Λ̂
)−1

[
X̂ ′

N
ε̄−

[
1′N

ε′

NPγ
P
1

B′ε′

N Pγ
P
1 + P ′ εε′N Pγ

P
1 − σ̂2(F̃ ′F̃ )−1γP1

]]
. (B.13)

56



By Lemmas 1 and 2(i),
(

Σ̂X − Λ̂
)

= Op(1). In addition, Lemmas 3 and 5 imply that

X̂ ′ε̄

N
=

1

N
(X̂ −X)′ε̄+

1

N
X ′ε̄

= Op

(
1√
N

)
, (B.14)

and Assumption 6(i) implies that

P ′
N∑
i=1

εi = Op

(√
N
)
. (B.15)

Note that

P ′ εε
′

N
PγP1 − σ̂2(F̃ ′F̃ )−1γP1 (B.16)

can be rewritten as

P ′
(
εε′

N
− 1

N

N∑
i=1

σ2
i IT

)
PγP1 −

[
(σ̂2 − σ2)−

(
1

N

N∑
i=1

σ2
i − σ2

)]
(F̃ ′F̃ )−1γP1 . (B.17)

Assumption 6(ii) implies that

P ′
(
εε′

N
−
∑N

i=1 σ
2
i

N
IT

)
PγP1 = Op

(
1√
N

)
. (B.18)

Using Lemma 1 and Assumption 5(i) concludes the proof of part (i) since σ̂2− σ2 = Op

(
1√
N

)
and

1
N

∑N
i=1 σ

2
i − σ2 = o

(
1√
N

)
.
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For part (ii), starting from (B.13), we have

√
N(Γ̂∗ − ΓP ) =

(
Σ̂X − Λ̂

)−1
[
X̂ ′ε̄√
N
−

(
X̂ ′√
N

(X̂ −X)ΓP

)
+
√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1

[
X̂ ′ε̄√
N
−
[

1′N
B̂′

] [
0N ,

ε′P√
N

]
ΓP +

√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1

[
X ′ε̄√
N

+
1√
N

[
0′N
P ′ε

]
ε′1T
T
− 1√

N

[
1′N ε

′P
B̂′ε′P

]
γP1 +

√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1

[ [
1′N
B′

]
ε′1T

T
√
N

+

[
−1′N

ε′P√
N
γP1

P ′ εε′√
N

1T
T −B

′ ε′P√
N
γP1 − P ′ εε

′
√
N
PγP1

]

+
√
Nσ̂2(F̃ ′F̃ )−1γP1

]

=
(

Σ̂X − Λ̂
)−1

 1′N√
N
ε′
(

1T
T − Pγ

P
1

)
B′ε′√
N

(
1T
T − Pγ

P
1

)
+ P ′ εε′√

N

(
1T
T − Pγ

P
1

)
+ tr(Mεε′)√

N(T−K−1)
P ′PγP1


=

(
Σ̂X − Λ̂

)−1
[[

1′N ε
′

√
N
Q

B′ε′√
N
Q

]
+

[
0

P ′ εε′√
N
Q+ tr(Mεε′)√

N(T−K−1)
P ′PγP1

]]

=
(

Σ̂X − Λ̂
)−1

(I1 + I2) . (B.19)

Using Lemmas 1 and 2(ii), we have

(
Σ̂X − Λ̂

)
p→

([
1 µ′β
µβ Σβ + σ2(F̃ ′F̃ )−1

]
−
[

0 0′K
0K σ2(F̃ ′F̃ )−1

])
= ΣX . (B.20)

Consider now the terms I1 and I2. Both terms have a zero mean and, under Assumption 5(vi),

they are asymptotically uncorrelated. Assumptions 2, 5(i), 6(i), and 6(iii) imply that

Var(I1) = E

[
Q′ 1√

N

∑N
i=1 εi

1√
N

∑N
j=1 ε

′
jQ Q′ 1√

N

∑N
i=1 εi

1√
N

∑N
j=1 ε

′
j(Q⊗ β′j)

1√
N

∑N
i=1(Q′ ⊗ βi)εi 1√

N

∑N
j=1 ε

′
jQ

1√
N

∑N
i=1(Q′ ⊗ βi)εi 1√

N

∑N
j=1 ε

′
j(Q⊗ β′j)

]

=

[
Q′ 1

N

∑N
i=1E[εiε

′
i]Q Q′ 1

N

∑N
i=1E[εiε

′
i](Q⊗ β′i)

1
N

∑N
i=1(Q′ ⊗ βi)E[εiε

′
i]Q

1
N

∑N
i=1(Q′ ⊗ βi)E[εiε

′
i](Q⊗ β′i)

]
+ o(1)

→
[

σ2Q′Q σ2Q′(Q⊗ µ′β)

σ2(Q′ ⊗ µβ)Q σ2(Q′Q⊗ Σβ)

]
= σ2Q′QΣX =

σ2

T

[
1 + γP1

′
(
F̃ ′F̃ /T

)−1
γP1

]
ΣX . (B.21)
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Next, consider I2. Since P ′ 1√
N

∑N
i=1 σ

2
iQ+ 1

T−K−1tr
(
M 1√

N

∑N
i=1 σ

2
i

)
P ′PγP1 = 0K , we have

I2 =

[
0

(Q′ ⊗ P ′)vec
(

1√
N

∑N
i=1(εiε

′
i − σ2

i IT )
)

+ 1
T−K−1tr

(
M 1√

N

∑N
i=1(εiε

′
i − σ2

i IT )
)
P ′PγP1

]

=

[
0
I22

]
. (B.22)

Therefore, Var(I2) has the following form:

Var(I2) =

[
0 0′K

0K E [I22I
′
22]

]
. (B.23)

Under Assumptions 5(i) and 6(ii), we have

E
[
I22I

′
22

]
= E

[
(Q′ ⊗ P ′) 1√

N

N∑
i=1

vec(εiε
′
i − σ2

i IT )
1√
N

N∑
j=1

vec(εjε
′
j − σ2

j IT )′(Q⊗ P)

]

+E

[
(Q′ ⊗ P ′) 1√

N

N∑
i=1

vec(εiε
′
i − σ2

i IT )
1√
N

N∑
j=1

vec(εjε
′
j − σ2

j IT )′
vec(M)

T −K − 1
γP1
′P ′P

]

+E

[
P ′PγP1

vec(M)′

T −K − 1

1√
N

N∑
i=1

vec(εiε
′
i − σ2

i IT )
1√
N

N∑
j=1

vec(εjε
′
j − σ2

j IT )′(Q⊗ P)

]

+E

[
P ′PγP1

vec(M)′

T −K − 1

1√
N

N∑
i=1

vec(εiε
′
i − σ2

i IT )
1√
N

N∑
j=1

vec(εjε
′
j − σ2

j IT )′
vec(M)

T −K − 1

×γP1 ′P ′P

]

→

[
(Q′ ⊗ P ′) + P ′PγP1

vec(M)′

T −K − 1

]
Uε

[
(Q⊗ P) +

vec(M)

T −K − 1
γP1
′P ′P

]
. (B.24)

Defining Z =
[
(Q⊗ P) + vec(M)

T−K−1γ
P
1
′P ′P

]
concludes the proof of part (ii). �

Proof of Theorem 2. By Theorem 1(i), γ̂∗1 →p γ
P
1 . Lemma 1 implies that Λ̂ is a consistent

estimator of Λ. Hence, using Lemma 2(ii), we have
(

Σ̂X − Λ̂
)
→p ΣX , which implies that V̂ →p V.

A consistent estimator of W requires a consistent estimate of the matrix Uε, which can be obtained

using Lemma 6. This concludes the proof of Theorem 2. �
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Proof of Theorem 3. Writing

(Σ̂X − Λ̂)−1 X̂
′Rt
N

= (Σ̂X − Λ̂)−1Σ̂XΓPt−1 + (Σ̂X − Λ̂)−1X̂ ′ε′ıt,T + (Σ̂X − Λ̂)−1X̂ ′(X − X̂)ΓPt−1

= (Σ̂X − Λ̂)−1(Σ̂X − Λ̂ + Λ̂)ΓPt−1 + (Σ̂X − Λ̂)−1X̂ ′ε′ıt,T + (Σ̂X − Λ̂)−1X̂ ′(X − X̂)ΓPt−1

= ΓPt−1 + (Σ̂X − Λ̂)−1

(
X̂ ′ε′ıt,T
N

+
X̂ ′(X − X̂)

N
ΓPt−1 + Λ̂ΓPt−1

)

= ΓPt−1 + (Σ̂X − Λ̂)−1

(
X ′ε′ıt,T
N

+
(X̂ −X)′ε′ıt,T

N
+
X̂ ′(X − X̂)

N
ΓPt−1 + Λ̂ΓPt−1

)

= ΓPt−1 + (Σ̂X − Λ̂)−1

([
1′N
B′

]
ε′ıt,T
N

+
1

N

[
0′N
P ′ε

]
ε′ıt,T

+
1

N

[
−1′N ε

′PγP1,t−1

−B′ε′PγP1,t−1 − P ′εε′PγP1,t−1

]
+ Λ̂ΓPt−1

)
= ΓPt−1 + (Σ̂X − Λ̂)−1

([
1′N ε
′

N Qt−1
B′ε′

N Qt−1

]
+

[
0

P ′εε′

N Qt−1

]
+ Λ̂ΓPt−1

)

= ΓPt−1 + (Σ̂X − Λ̂)−1

([
1′N ε
′

N Qt−1
B′ε′

N Qt−1

]
+

[
0

−P ′εε′

N PγP1,t−1

]
+ Λ̂ΓPt−1 +

[
0

P ′εε′

N ıt,T

])
(B.25)

with

E

([
0

−P ′εε′N Pγ
P
1,t−1

]
+ Λ̂ΓPt−1

)
= E

([
0

−P ′εε′N Pγ
P
1,t−1

]
+

[
0

tr(Mεε′)
N(T−K−1)P

′PγP1,t−1

])
= 0K+1

(B.26)

and

[
0

P ′εε′

N ıt,T

]
→p

[
0

σ2P ′ıt,T

]
=

[
0

σ2(F̃ ′F̃ )−1f̃t

]
(B.27)

yields part (i).

Next,

Γ̂∗t−1 = (Σ̂X − Λ̂)−1 X̂
′Rt
N
− (Σ̂X − Λ̂)−1

[
0

σ̂2P ′ıt,T

]
= ΓPt−1 + (Σ̂X − Λ̂)−1

([
1′N ε
′

N Qt−1
B′ε′

N Qt−1

]
+

[
0

P ′εε′

N Qt−1

]
−
[

0
σ̂2P ′Qt−1

])
. (B.28)
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The part of
√
N(Γ̂∗t−1 − ΓPt−1) that depends on εε′ can be written as

(Σ̂X − Λ̂)−1[(Q′t−1 ⊗ P ′)− P ′Qt−1vec(M)′]vec

(
1√
N

N∑
i=1

(εiε
′
i − σ2

i IT )

)

= (Σ̂X − Λ̂)−1Z ′t−1vec

(
1√
N

N∑
i=1

(εiε
′
i − σ2

i IT )

)
, (B.29)

and the result follows along the proof of Theorem 1(ii). �

Proof of Theorem 4. We first establish a simpler, asymptotically equivalent, expression for
√
N
(
êP ′êP

N − σ̂2Q̂′Q̂
)

. Then, we derive the asymptotic distribution of this approximation. Con-

sider the sample ex post pricing errors,

êP = R̄− X̂Γ̂∗. (B.30)

Starting from R̄ = X̂ΓP + ηP with ηP = ε̄− (X̂ −X)ΓP , we have

êP = X̂ΓP + ε̄− (X̂ −X)ΓP − X̂Γ̂∗

= ε̄− X̂(Γ̂∗ − ΓP )− (X̂ −X)ΓP . (B.31)

Then,

êP ′êP = ε̄′ε̄+ ΓP ′(X̂ −X)′(X̂ −X)ΓP − 2(Γ̂∗ − ΓP )′X̂ ′ε̄− 2ΓP ′(X̂ −X)′ε̄

+2ΓP ′(X̂ −X)′X̂(Γ̂∗ − ΓP ) + (Γ̂∗ − ΓP )′X̂ ′X̂(Γ̂∗ − ΓP ).

Note that

ε̄′ε̄

N
=

1

T 2
1′T
εε′

N
1T →p

σ2

T
, (B.32)

and, by Lemma 2(iii),

ΓP ′
(X̂ −X)′(X̂ −X)

N
ΓP = γP1

′P ′ εε
′

N
PγP1 →p σ

2γP1
′(F̃ ′F̃ )−1γP1 . (B.33)

Using Lemmas 3 and 5 and Theorem 1, we have

(Γ̂∗ − ΓP )′X̂ ′ε̄

N
=

(Γ̂∗ − ΓP )′(X̂ −X)′ε̄

N
+

(Γ̂∗ − ΓP )′X ′ε̄

N
= Op

(
1

N

)
(B.34)

and

ΓP ′(X̂ −X)′ε̄

N
= Op

(
1√
N

)
. (B.35)
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In addition, using Lemmas 2(i), 2(iii), 4 and Theorem 1, we have

ΓP ′(X̂ −X)′X̂(Γ̂∗ − ΓP )

N
=

ΓP ′(X̂ −X)′(X̂ −X)(Γ̂∗ − ΓP )

N
+

ΓP ′(X̂ −X)′X(Γ̂∗ − ΓP )

N

= Op

( 1√
N

)
+Op

(
1

N

)
(B.36)

and

(Γ̂∗ − ΓP )′X̂ ′X̂(Γ̂∗ − ΓP )

N
= Op

(
1

N

)
. (B.37)

It follows that

êP ′êP

N
→p

σ2

T
+ σ2γP1

′(F̃ ′F̃ )−1γP1 = σ2Q′Q. (B.38)

Collecting terms and rewriting explicitly only the ones that are Op

(
1√
N

)
, we have

êP ′êP

N
=

ε̄′ε̄

N
(B.39)

+
ΓP ′(X̂ −X)′(X̂ −X)ΓP

N
(B.40)

−2
ΓP ′(X̂ −X)′ε̄

N
(B.41)

+2
ΓP ′(X̂ −X)′(X̂ −X)(Γ̂∗ − ΓP )

N
(B.42)

+Op

( 1

N

)
. (B.43)

Consider the sum of the three terms in Eqs. (B.39)–(B.41). Under Assumption 5(i), we have

ε̄′ε̄

N
+

ΓP ′(X̂ −X)′(X̂ −X)ΓP

N
− 2

ΓP ′(X̂ −X)′ε̄

N

=
1′T
T

εε′

N

1T
T

+ γP1
′P ′ εε

′

N
PγP1 − 2

1′T
T

εε′

N
PγP1

=
1′T
T

εε′

N

(1T
T
− PγP1

)
−

1′T
T

εε′

N
PγP1 + γP

′
1 P ′

εε′

N
PγP1

=
1′T
T

εε′

N
Q−Q′ εε

′

N
PγP1

= Q′
εε′

N

1T
T
−Q′ εε

′

N
PγP1

= Q′
εε′

N
Q = Q′

(εε′
N
− σ̄2IT

)
Q+ σ2Q′Q+ o

(
1√
N

)
, (B.44)

where the o
(

1√
N

)
term comes from (σ̄2 − σ2)Q′Q. As for the term in Eq. (B.42), define

(
Σ̂X − Λ̂

)−1
=

[
Σ̂11 Σ̂12

Σ̂21 Σ̂22

]
, (B.45)
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where every block of
(

Σ̂X − Λ̂
)−1

is Op(1) by the nonsingularity of ΣX and Slutsky’s theorem.

Using the same arguments as for Theorem 2, we have

2
ΓP ′(X̂ −X)′(X̂ −X)(Γ̂∗ − ΓP )

N

= 2

[
γP1
′P ′ εε

′

N
PΣ̂21, γ

P
1
′P ′ εε

′

N
PΣ̂22

][ 1′N ε
′Q

N
B′ε′Q
N + Z ′vec

(
εε′

N − σ̄
2IT

) ]

= 2γP1
′P ′
(εε′
N
− σ̄2IT

)
PΣ̂21

1′N ε
′Q

N
+ 2γP1

′P ′
(εε′
N
− σ̄2IT

)
PΣ̂22

B′ε′Q

N

+2γP1
′P ′
(εε′
N
− σ̄2IT

)
PΣ̂22Z

′vec
(εε′
N
− σ̄2IT

)
+2σ2γP1

′P ′PΣ̂21
1′N ε

′Q

N
+ 2σ2γP1

′P ′PΣ̂22
B′ε′Q

N

+2σ2γP1
′P ′PΣ̂22Z

′vec
(εε′
N
− σ̄2IT

)
+ op

(
1

N

)
= 2σ2γP1

′P ′PΣ̂21
1′N ε

′Q

N
+ 2σ2γP1

′P ′PΣ̂22
B′ε′Q

N

+2σ2γP1
′P ′PΣ̂22Z

′vec
(εε′
N
− σ̄2IT

)
+ op

(
1

N

)
+Op

(
1

N

)
, (B.46)

where the two approximations on the right-hand side of the previous expression refer to

2(σ̄2 − σ2)γP1
′P ′PΣ̂21

1′N ε
′Q

N
+ 2(σ̄2 − σ2)γP1

′P ′PΣ̂22
B′ε′Q

N

+2(σ̄2 − σ2)γP1
′P ′PΣ̂22Z

′vec

(
εε′

N
− σ̄2IT

)
= op

(
1

N

)
(B.47)

and

2γP1
′P ′
(
εε′

N
− σ̄2IT

)
PΣ̂21

1′N ε
′Q

N
+ 2γP1

′P ′
(εε′
N
− σ̄2IT

)
PΣ̂22

B′ε′Q

N

+2γP1
′P ′
(
εε′

N
− σ̄2IT

)
PΣ̂22Z

′vec

(
εε′

N
− σ̄2IT

)
= Op

(
1

N

)
, (B.48)

respectively. Therefore, we have

êP ′êP

N
= Q′

(
εε′

N
− σ̄2IT

)
Q+ σ2Q′Q

+2σ2γP1
′P ′PΣ̂21

1′N ε
′Q

N
+ 2σ2γP1

′P ′PΣ̂22
B′ε′Q

N

+2σ2γP1
′P ′PΣ̂22Z

′vec

(
εε′

N
− σ̄2IT

)
+Op

(
1

N

)
+ op

(
1

N

)
+ o

(
1√
N

)
. (B.49)
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It follows that

êP ′êP

N
− σ̂2Q̂′Q̂ = Q′

(
εε′

N
− σ̄2IT

)
Q−

(
σ̂2Q̂′Q̂− σ2Q′Q

)
+2σ2γP1

′P ′PΣ̂21
1′N ε

′Q

N
+ 2σ2γP1

′P ′PΣ̂22
B′ε′Q

N

+2σ2γP1
′P ′PΣ̂22Z

′vec

(
εε′

N
− σ̄2IT

)
+Op

(
1

N

)
+ op

(
1

N

)
+ o

(
1√
N

)
.

(B.50)

Note that

σ̂2Q̂′Q̂− σ2Q′Q

=
1

T
(σ̂2 − σ2) + σ̂2γ̂∗1

′(F̃ ′F̃ )−1γ̂∗1 − σ2γP1
′(F̃ ′F̃ )−1γP1

=
1

T
(σ̂2 − σ2) + (σ̂2 − σ2)γP1

′(F̃ ′F̃ )−1γP1 + 2σ2(γ̂∗1 − γP1 )′(F̃ ′F̃ )−1γP1 +Op

(
1

N

)
= (σ̂2 − σ2)

(
1

T
+ γP1

′(F̃ ′F̃ )−1γP1

)
+ 2σ2(γ̂∗1 − γP1 )′(F̃ ′F̃ )−1γP1 +Op

(
1

N

)
= (σ̂2 − σ2)

(
1

T
+ γP1

′(F̃ ′F̃ )−1γP1

)
+ 2σ2γP1

′P ′PΣ̂21
1′N ε

′Q

N
+ 2σ2γP1

′P ′PΣ̂22
B′ε′Q

N

+2σ2γP1
′P ′PΣ̂22Z

′vec

(
εε′

N
− σ̄2IT

)
+Op

(
1

N

)
+Op

(
1

N
√
N

)
, (B.51)

where σ2(γ̂∗1−γP1 )′(F̃ ′F̃ )−1(γ̂∗1−γP1 )+2 (σ̂2−σ2)(γ̂∗1−γP1 )′(F̃ ′F̃ )−1γP1 = Op
(

1
N

)
and (σ̂2−σ2)(γ̂∗1−

γP1 )′(F̃ ′F̃ )−1(γ̂∗1 − γP1 ) = Op

(
1

N
√
N

)
. It follows that

ê′ê

N
− σ̂2Q̂′Q̂

= Q′
(εε′
N
− σ̄2IT

)
Q− (σ̂2 − σ2)

( 1

T
+ γP1

′(F̃ ′F̃ )−1γP1

)
+Op

( 1

N
√
N

)
+Op

( 1

N

)
+ o
( 1√

N

)
+ op

( 1√
N

)
=

[(
Q′ ⊗Q′

)
− Q′Q

T −K − 1
vec(M)′

]
vec
(εε′
N
− σ̄2IT

)
+ op

( 1√
N

)
= Z ′Qvec

(εε′
N
− σ̄2IT

)
+ op

( 1√
N

)
, (B.52)

where, for simplicity, we have condensed Op

(
1

N
√
N

)
+Op

(
1
N

)
+ o
(

1√
N

)
+ op

(
1√
N

)
into the single

term op

(
1√
N

)
. Hence,

√
N
( ê′ê
N
− σ̂2Q̂′Q̂

)
=
√
NZ ′Qvec

(εε′
N
− σ̄2IT

)
+ op(1), (B.53)
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implying that the asymptotic distribution of
√
N
(
ê′ê
N − σ̂

2Q̂′Q̂
)

is equivalent to the asymptotic

distribution of
√
NZ ′Qvec

(
εε′

N − σ̄
2IT

)
. Finally, by Assumption 6(ii), we have

√
NZ ′Qvec

(εε′
N
− σ̄2IT

)
→d N

(
0, Z ′QUεZQ

)
.� (B.54)

Proof of Theorem 5. For part (i), in view of Eq. (65), we obtain R̄ = XΓ̃P + e + ε̄, where

Γ̃P = Γ̃ + f̄ − E[ft]. Using the same arguments as for Theorem 1,

Γ̂∗ − Γ̃P =

(
X̂ ′X̂

N
− Λ̂

)−1 [
X̂ ′ε̄

N
−

(
X̂ ′

N

(
X̂ −X

)
− Λ̂

)
Γ̃P +

X̂ ′e

N

]
(B.55)

with
(
X̂′X̂
N − Λ̂

)
= Op(1), X̂

′ε̄
N = Op

(
1√
N

)
, and

(
X̂′

N

(
X̂ −X

)
− Λ̂

)
= Op

(
1√
N

)
. As for the term

X̂′e
N ,

X̂ ′e

N
=
X ′e

N
+

(X̂ −X)′e

N
= 0K+1 +

1

N

[
0

P ′ε e

]

= 0K+1 +Op

(
1√
N

)
(B.56)

since P ′ε e = Op((P ′
∑N

i,j=1 σijeiejP)
1
2 ) = Op(

√
N) by Assumption 7(i)-(ii). Next,

√
N
(

Γ̂∗ − Γ̃P
)

=
(

Σ̂X − Λ̂
)−1

1′N ε
′Q√
N

B′ε′Q√
N

+

 0

P ′εε′Q√
N

+ tr(Mεε′)√
N(T−K−1)

P ′P γ̃P1

+

 0

P ′ 1√
N

∑N
i=1 εiei


≡
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Σ̂X − Λ̂

)−1
(I1 + I2 + I3) . (B.57)

As for terms I1 and I2, Theorem 1 applies, that is,
(

Σ̂X − Λ̂
)
→p ΣX , Var(I1) = σ2

T

[
1 + γ̃P

′
1

(
F̃ ′F̃
T

)−1
γ̃P1

]
ΣX

and Var(I2) =

[
0 0′K

0K E[I22I
′
22]

]
, with E[I22I

′
22] =

[
(Q′ ⊗ P ′) + P ′P γ̃P1

vec(M)′

T−K−1

]
Uε

[
(Q⊗ P) + vecM

T−K−1 γ̃
P ′
1 P ′P

]
,

where Cov(I1, I2) = 0(K+1)×(K+1). Consider now the term I3 and note that it has a zero mean. Its

variance is equal to

Var(I3) = E

[
0 0′K

0K P ′ 1
N

∑N
i,j=1 εiε

′
jeiejP

]
→p

[
0 0′K

0K τΩP ′P

]
≡ Ω, (B.58)

and the covariance term satisfies

Cov(I1, I3) = E

1′N ε
′Q√
N

B′ε′Q√
N

[0, 1√
N

∑N
i=1 eiε

′
iP
]
→p

[
0 τΦQ

′P

0K τΦ (Q′ ⊗ µβ)P

]
≡ Φ, (B.59)
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while Cov(I2, I3) = 0(K+1)×(K+1) by the assumption of zero third moment of the error term. Using

Lemmas 8 and 9, the proof of part (ii) becomes very similar to the proof of Theorem 2 and is

omitted. �

Proof of Theorem 6. For part (i), rewrite[
Γ̂∗

δ̂∗

]
=

[
ΓP

δ

]
+

[
X̂ ′X̂ − Λ̂ X̂ ′C

C ′X̂ C ′C

]−1 [[
Λ̂ΓP

0Kc

]
+

[
X̂ ′

C ′

]
(ε̄+ (X − X̂)ΓP )

]
.

As for the bias associated with Γ̂∗ (see the proof of Theorem 1), we have

Λ̂ΓP +
1

N
X̂ ′(ε̄+ (X − X̂)ΓP ) = Op(N

−1/2). (B.60)

As for the bias associated with δ̂∗, we have

1

N
C ′(ε̄+ (X − X̂)ΓP ) =

1

N
C ′ε′

(
1T
T
− PγP1

)
=

1

N
C ′ε′Q = Op(N

−1/2) (B.61)

since N−1C ′ε′ →p 0Kc×T and

Var

(
1

N
C ′ε′Q

)
= (Q′ ⊗ IKc)

1

N2

N∑
i,j=1

Σzz,ij(Q⊗ IKc) =
1

N2
(Q′ ⊗ IKc)

N∑
i,j=1

σij(IT ⊗ cic′j)(Q⊗ IKc)

=
1

N2

N∑
i,j=1

σij(Q
′Qcic

′
j) =

1

N
σ2(Q′QΣCC) + o

(
1

N

)
(B.62)

by Assumption 8.

For part (ii), by straightforward generalizations of Lemmas 1 and 2(ii), we have

1

N

[
X̂ ′X̂ −N Λ̂ X̂ ′C

C ′X̂ C ′C

]
→p

 ΣX

[
µ′C

Σ′CB

]
[
µC ΣCB

]
ΣCC

 = L. (B.63)

We now prove that L is positive-definite. Using the blockwise formula for the inverse of a matrix, the

invertibility of L follows from ΣCC being positive-definite (see Assumption 8(i)) and the invertibility

of

[
1 µ′β
µβ Σβ

]
−
[
µ′C

Σ′CB

]
Σ−1
CC

[
µC ΣCB

]
. In turn, this holds if

D = Σβ − Σ′CBΣ−1
CCΣCB (B.64)

is positive-definite and

1− µ′CΣ−1
CCµC − (µ′β − µ′CΣ−1

CCΣCB)D−1(µβ − Σ′CBΣ−1
CCµC) (B.65)
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is nonzero. The last equation can be rewritten as

1− [µ′C µ
′
β]

[
ΣCC ΣCB

Σ′CB Σβ

]−1 [
µC
µβ

]
. (B.66)

The positiveness of Eq. (B.66) and the positive-definiteness of D follow from Assumption 8(i).

Next, following the proof of Theorem 1,

√
N

[
Γ̂∗ − ΓP

δ̂∗ − δ

]
=
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X̂′X̂
N − Λ̂ X̂′C

N
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+
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Q+ tr(Mεε′)√
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)

≡

[
X̂′X̂
N − Λ̂ X̂′C

N
C′X̂
N

C′C
N

]−1

(I1 + I2 + I3) . (B.67)

We now derive Var(I3) and Cov(I1, I
′
3) because the other terms can be directly obtained from

Theorem 1 and Cov(I2, I
′
3) = 0(K+Kc+1)×(K+Kc+1). We have

Var(I3) =

[
0′(K+1)×(K+1) 0′(K+1)×Kc

0Kc×(K+1)
Q′Q
N

∑N
i=1 σij(cic

′
j)

]
→
[
0′(K+1)×(K+1) 0′(K+1)×Kc

0Kc×(K+1) σ2Q′QΣCC

]
and, by Theorem 1,

Cov(I1, I
′
3) =

0(K+1)×(K+1)
Q′Q
N

∑N
i=1 σij

([
1
βi

]
c′j

)
0Kc×(K+1) 0Kc×Kc

→
0(K+1)×(K+1) σ2Q′Q

[
µ′C

Σ′CB

]
0Kc×(K+1) 0Kc×Kc

 .�
Appendix C: Explicit Form of Uε

Denote by Uε the T 2 × T 2 matrix

Uε =



U11 · · · U1t · · · U1T

...
. . .

...
...

...

Ut1 · · · Utt · · · UtT

...
...

...
. . .

...

UT1 · · · UTt · · · UTT


. (C.1)
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Each block of Uε is a T × T matrix. The blocks along the main diagonal, denoted by Utt,

t = 1, 2, . . . , T , are themselves diagonal matrices, with (κ4 + 2σ4) in the (t, t)-th position and σ4 in

the (s, s) position for every s 6= t; that is,

↓
t-th column

Utt = →
t-th row



σ4 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · σ4 0 · · · · · · 0
0 · · · 0 (κ4 + 2σ4) 0 · · · 0
0 · · · · · · 0 σ4 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 σ4


. (C.2)

The blocks outside the main diagonal, denoted by Uts, s, t = 1, 2, . . . , T with s 6= t, are all made of

zeros except for the (s, t)-th position that contains σ4, that is,

↓
t-th column

Uts = →
s-th row



0 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 · · · · · · 0
0 · · · 0 σ4 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 0


. (C.3)

Under Assumption 5, by Lemma 6, it is easy to show that Ûε in Theorem 2 is a consistent plug-in

estimator of Uε that only depends on σ̂4.
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Table 1
Percentage difference between estimated risk premia

Factor T = 36 T = 120

Panel A: CAPM (with liquidity)

mkt 64.3% 27.2%
liq 41.3% 54.2%

Panel B: FF3 (with liquidity)

mkt 13.9% 7.3%
smb 14.7% 12.3%
hml 51.6% 31.2%
liq 22.9% 46.1%

Panel C: FF5 (with liquidity)

mkt 15.3% 11.1%
smb 13.2% 9.7%
hml 14.1% 15.2%
rmw 13.3% 15.2%
cma 43.3% 33.0%
liq 13.9% 38.7%

The table reports the percentage difference between the Shanken (1992) estimator, γ̂∗1 , and the OLS CSR
estimator, γ̂1, averaged over rolling windows of size T = 36 and T = 120, respectively. The three panels refer
to the CAPM, Fama and French (1993) three-factor model (FF3), and Fama and French (2015) five-factor
model (FF5). Each of these models has been augmented with the non-traded liquidity factor of Pástor and
Stambaugh (2003). We use monthly return data on individual stocks from CRSP and factor data from
Kenneth French’s and Lubos Pástor’s websites from January 1966 to December 2013.
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Table 2
Betas versus Characteristics

CAPM FF3 FF5

Panel A: F -tests and rejection frequencies

H0 : γP1 = 0K

F -tests 14.54 17.33 21.14

Rejection frequencies 25.84% 28.72% 29.91%

H0 : δ = 0Kc

F -tests 888.27 960.01 927.04

Rejection frequencies 100% 100% 100%

Panel B: Variance ratios

100×
S2
R̄C

S2
R̄

73.84% 76.36% 76.70%

100×
S2
R̄⊥C
S2
R̄

2.21% 3.11% 3.19%

The top panel of the table reports the F -tests (average over rolling windows of size T = 36) for the null
hypotheses H0 : γP1 = 0K and H0 : δ = 0Kc

, respectively, and the rejection frequencies at the 95% confidence
level (average over rolling windows of size T = 36). Each column refers to a different beta-pricing model,
that is, the CAPM (first column), the Fama and French (1993) three-factor model (FF3, second column),
and the Fama and French (2015) five-factor model (FF5, third column). The bottom panel reports the
variance ratios 100 × S2

R̄C
/S2

R̄
and 100 × S2

R̄⊥C
/S2

R̄
defined in Section 4.4 (average over rolling windows of

size T = 36). The data is from DeMiguel et al. (2018) and Kenneth French’s website (from January 1980 to
December 2015).
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Figure 1
Specification testing for the Fama and French (2015) five-factor model

The figure presents the time series of p-values (black line) of S∗ for FF5. Rolling time windows of three (top
panel) and 10 years (bottom panel) are used. The dashed dotted red line denotes the 5% significance level
of the test. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure 2
Specification testing for the liquidity-augmented Fama and French (2015) five-factor
model

The figure presents the time series of p-values (black line) of S∗ for the liquidity-augmented FF5. Rolling
time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red line denotes
the 5% significance level of the test. We use monthly return data on individual stocks from CRSP and factor
data from Kenneth French’s and Lubos Pástor’s websites from January 1966 to December 2013.
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Figure 3
Specification testing for the Fama and French (2015) five-factor model using the
Gibbons et al. (1989) and Gungor and Luger (2016) tests

The figure presents the time series of p-values of the GRS (blue line) and GL (green line) tests for FF5.
Rolling time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red
line denotes the 5% significance level of the tests. The grey bars are for the periods in which the GL test is
inconclusive. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure 4
Estimates and confidence intervals for the market risk premium

The figure presents the estimates and the associated confidence intervals for the market risk premium from
the Fama and French (2015) five-factor model. The bold black line is for the Shanken (1992) estimator. The
corresponding grey band represents the 95% confidence intervals based on the large-N standard errors of
Theorem 5. We also report the OLS CSR estimator (dotted red line) and the corresponding 95% confidence
interval (striped orange band) based on the traditional large-T standard errors. Finally, the dashed black
line is for the rolling factor sample mean. We use monthly return data on individual stocks from CRSP and
factor data from Kenneth French’s website from January 1966 to December 2013.
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Figure 5
Estimates and confidence intervals for the time-varying market risk premium

The figure presents the estimates and the associated confidence intervals for the time-varying market risk
premium from the Fama and French (2015) five-factor model based on our large-N methodology. The top
panel reports the Shanken (1992) large-N estimates, expressed in terms of a single line (black line) and in
terms of horizontal bars of length T = 36 observations (blue line), with the corresponding 95% confidence
intervals based on the large-N standard errors of Theorem 5 (grey band). We also report the rolling sample
mean (using fixed rolling windows of six months of daily data) of the market excess return (dashed dotted red
line) and the corresponding 95% confidence interval (orange band). The bottom panel reports the modified
Shanken (1992) estimator (black line) and the corresponding 95% confidence interval (grey band) based on
the large-N standard errors of part (ii) of Theorem 3. We use monthly return data on individual stocks from
CRSP and factor data from Kenneth French’s website from January 1966 to December 2013. The daily data
on the market excess return is from Kenneth French’s website. The light grey bands correspond to the NBER
recession dates and to various economic and financial crises. They are numbered as follows: [1] 1969:10-
1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7]
1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-
1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6,
[18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure 6
Estimates and confidence intervals for the liquidity risk premium

The figure presents the estimates and the associated confidence intervals for the liquidity risk premium from
the liquidity-augmented Fama and French (2015) five-factor model. The bold black line is for the Shanken
(1992) estimator. The corresponding grey band represents the 95% confidence intervals based on the large-N
standard errors of Theorem 5. We also report the OLS CSR estimator (dotted red line) and the corresponding
95% confidence interval (striped orange band) based on the traditional large-T standard errors. Finally, the
dashed black line is for the mimicking portfolio rolling factor sample mean. We use monthly return data
on individual stocks from CRSP and factor data from Kenneth French’s and Lubos Pástor’s websites from
January 1966 to December 2013.
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Figure 7
Estimates and confidence intervals for the time-varying liquidity risk premium

The figure presents the estimates and the associated confidence intervals for the time-varying liquidity
risk premium from the liquidity-augmented Fama and French (2015) five-factor model based on our large-
N methodology. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T = 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (grey band).
We also report the rolling sample mean (using fixed rolling windows of six months) of the corresponding
mimicking portfolio excess return (dashed dotted red line) and the corresponding 95% confidence interval
(orange band). The bottom panel reports the modified Shanken (1992) estimator (black line) and the
corresponding 95% confidence interval (grey band) based on the large-N standard errors of part (ii) of
Theorem 3. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s and Lubos Pástor’s websites from January 1966 to December 2013. The light grey bands correspond
to the NBER recession dates and to various economic and financial crises. They are numbered as follows:
[1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-
1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12]
1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-
2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure 8
Estimates and confidence intervals for the characteristic premia

The figure presents estimates (blue line) of the characteristic premia on the book-to-market ratio, B/M,
asset growth, ASSGR, operating profitability, OPERPROF, market capitalization, MCAPIT, and six-month
momentum, MOM6, and the associated confidence intervals based on Theorem 7 (light blue band), for the
CAPM, the Fama and French (FF3, 1993) three-factor model, and the Fama and French (FF5, 2015) five-
factor model. The data is from DeMiguel et al. (2018) and Kenneth French’s website (from January 1980 to
December 2015).
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