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Abstract

This paper introduces the concept of an implicit nuisance parameter for test-
ing the null hypothesis of linear equality constraints against the two-sided alter-
native hypothesis when the parameters are subject to equality and inequality
constraints in the maintained hypothesis. We propose an approach to identify
the implicit nuisance parameter and provide a comprehensive study of asymp-
totically uniformly valid Wald, QLR, and score tests in an extremum estimation
set-up. Among the two Wald tests, one QLR test, and three score tests devel-
oped in this paper, three tests fully exploit the information in the parameter
space and the asymptotic distributions of their test statistics are discontinuous
in the implicit nuisance parameter. The other three tests employ part of the
information in the maintained hypothesis through projection and the asymp-
totic distributions of their test statistics are not discontinuous in any model
parameter but depend on polytope projections. We present an algorithm based
on Fourier-Motzkin Elimination to compute such projections. Numerical results
from a Monte Carlo study of the finite sample performance of our tests and an
empirical illustration are presented.
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1 Introduction

Motivation and Hypotheses When the parameter of interest is in the interior of
its parameter space, methods for estimation and inference have been well developed.
Under regularity conditions, an extremum estimator is asymptotically normally dis-
tributed. Wald, Quasi-Likelihood Ratio (QLR), and score tests for the null hypothesis
of equality constraints against the two-sided alternative hypothesis are asymptotically
equivalent, see e.g., Engle (1984). When the parameter is on the boundary of the pa-
rameter space, Andrews (1997, 1999) develops a general asymptotic theory for an
extremum estimator showing that its asymptotic distribution is non-normal.

This paper provides an extensive study of Wald-type, QLR, and score-type tests
for linear equality constraints against the two-sided alternative hypothesis when it
may be unknown a priori whether some parameters are on the boundary or in the
interior of the parameter space.1 Let θ denote the parameter of interest and θ∗ be
the pseudo-true value. We consider the case that θ∗ ∈ Θ ⊂ Rl, where the parameter
space Θ is defined as

Θ ≡
{
θ ∈ Rl : Reθ = re and Rwθ ≥ rw

}
, (1)

in which Re and Rw are known matrices of dimensions le × l and lw × l, and re and
rw are known vectors of dimensions le and lw respectively. The matrix Re denotes
equality constraints on θ∗; and the matrix Rw denotes weak inequality constraints
on θ∗ that are unknown to bind or not. Although the presence of either type of
constraint is not required for the theory, the discussion in the paper caters to the case
where weak inequality constraints exist. Equality and inequality constraints of the
form seen in Θ are often implied by the natures of the parameters, such as weights
(Fox et al. (2011) and Fox et al. (2016)), or by economic theories imposing constraints
like non-negativity or monotonicity. It has long been recognized that incorporating

1To simplify exposition, we refer to Wald-type and score-type tests simply as Wald and score
tests in the rest of the paper.
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equality/inequality constraints in parameter estimation can yield an efficiency gain,
e.g., Liew (1976), Judge et al. (1984), Chernozhukov and Hong (2004), and Moon and
Schorfheide (2009). As noted in Andrews (2001): “in cases where the restrictions on
the parameter space arise from prior information, tests that utilize this information
have a considerable power advantage over tests that do not.”

Under the maintained hypothesis that θ∗ ∈ Θ, the null and alternative hypotheses
we consider in this paper are expressed as

H0 : θ∗ ∈ Θ0 and H1 : θ∗ ∈ Θ1, (2)

where Θ0 ≡ {θ ∈ Θ : Rθ = r} or equivalently,2

Θ0 =
{
θ ∈ Rl : Rθ = r, Reθ = re, and Rwθ ≥ rw

}
, (3)

in which R is a known matrix of dimension J × l and is of full row rank, r is a known
vector of dimension J , and

Θ1 ≡ Θ\Θ0 = {θ ∈ Θ : Rθ 6= r} .

Main Contributions There are two critical steps in developing asymptotically
uniformly valid tests for H0 under Θ. The first one is to determine binding, non-
binding, and undetermined inequalities in Rwθ

∗ ≥ rw under H0; and the second one
is to identify the implicit nuisance parameter, an important concept introduced in
this paper. Our first contribution is to propose a generic algorithm for implementing
both steps. Because our algorithm does not depend on any specific model, estimator,
or test statistic, it is applicable to any parametric or semiparametric model in which
the parameter space and the null hypothesis are specified as (1) and (2).

In the first step of our algorithm, we identify the implicit equalities and strictly re-
dundant inequalities in the null parameter space Θ0 by applying algorithms STREINQ
and IMPLEQ in Telgen (1983), leaving the rest as undetermined inequalities. Then we
use Gauss-Jordan elimination to identify an implicit nuisance parameter defined as a
subvector of the true value of the linear function in the undetermined inequalities that
corresponds to a row basis of the coefficient matrix of the linear function. Consider

2For the testing problem to be non-trivial, the set Θ0 is assumed to be non-empty. Methods such
as the Fourier-Motzkin Elimination discussed in Section 6.2 of this paper can be used to determine
whether Θ0 is empty or not.
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the special case that the parameter vector is non-negative, i.e., Θ =
{
θ ∈ Rl : θ ≥ 0

}
,

and the null hypothesis is on a subvector of θ∗. Under the null hypothesis, inequal-
ities in the system: θ∗ ≥ 0 corresponding to the subvector under testing are known
to bind (implicit equalities) or not to bind (strictly redundant inequalities) leaving
the remaining inequalities undetermined and the remaining subvector as the implicit
nuisance parameter.

The second contribution of the paper is to provide a comprehensive study of Wald,
QLR, and score tests for H0 against H1 in the general class of extremum estimation
problems considered in Andrews (1997, 1999) for non-trending data.3 Although our
QLR statistic takes the same form as the classical one, the classical Wald and score
statistics may be extended in different ways to account for the inequality constraints
in the maintained hypothesis. In the paper, we develop two Wald tests, one QLR
test, and three score tests. These six tests are categorized into two groups according
to how information in Θ is used. The tests in Group I, which includes one of the two
Wald tests, the QLR test, and one of the three score tests, fully exploit information
of the parameter space. The rest of the tests (in Group II) employ only part of the
information in Θ through projection. We provide a detailed treatment of three tests
in the main part of the paper: the Wald and QLR tests in Group I and one score test
in Group II. Our detailed treatment of these tests highlights the different challenges
in developing these tests posed by inequality constraints in the maintained hypothesis
and illustrates how we address these challenges.

We first show that the null asymptotic distributions of the Wald and QLR statis-
tics in Group I are discontinuous in the implicit nuisance parameter (when it exists),4

but the null asymptotic distribution of the score statistic in Group II does not depend
on the implicit nuisance parameter (even when it exists). In contrast to the standard
case of an interior parameter value, the null asymptotic distributions of the three
statistics differ except in special cases. We then develop asymptotically uniformly
valid Wald and QLR tests via a two-step procedure. This approach is based on a con-

3A sequel to this paper will explore the applicability of this approach to dynamic models with
deterministic and/or stochastic trends such as the Dickey-Fuller Regression in Andrews (1999) or
the GARCH (1, q∗) example in Andrews (1997).

4A probability measure P$ is said to be continuous in the model parameter $ if d (P$1 , P$2)→
0 when |$1 −$2| → 0, where d (·, ·) is some metric on the probability measures, such as the
Kolmogorov, bounded Lipschitz, or total variation metric and |·| is the absolute value. To simplify
exposition, we refer to parameters at which the asymptotic distribution of an estimator or the null
asymptotic distribution of a test statistic is discontinuous as nuisance parameters.
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fidence set for the implicit nuisance parameter and a Bonferroni-type correction. The
same method applies to the score test in Group I as well. Since the null asymptotic
distributions of the test statistics in Group II do not depend on the implicit nuisance
parameter, the two-step approach is not needed. However, implementing such tests
requires computing the projection of a polytope, an important problem that has been
studied extensively in diverse fields, such as constraint logic programming (Huynh
et al. (1992)), marginal problems (Fritz and Chaves (2012)), and robotics research
(Ponce et al. (1997)). Because this problem has not been explored in the econometrics
literature, we present one algorithm based on Fourier-Motzkin Elimination, and show
that it can be used in our testing framework. Additionally, the consistency and local
power of the tests are investigated. We show that the score tests in Group II may
even be inconsistent.

The third contribution of the paper is to establish two sets of asymptotic equiv-
alence results among the six test statistics: the Wald and score statistic in Group I;
and three statistics in Group II. Based on the equivalence results, we construct three
additional tests.

Lastly, we conduct a simulation study using a linear regression model to investigate
and compare the finite sample performance of all six tests developed in this paper
with the “classical” Wald, QLR, and score tests.5 Results demonstrate that the full-
information tests in Group I dominate the other tests. Although the three “classical”
tests perform well for normally distributed errors, they perform worse than all six
tests proposed in this paper when errors are skewed. As an empirical illustration, we
apply our tests to the models in Autor and Handel (2013) on wage differentials related
to job tasks and human capital and compare our results with the “classical” ones. For
testing the significance of regression coefficients, our tests provide more consistent
results across different model specifications compared to the “classical” ones.

Related Literatures Maintaining the conventional assumption that the true pa-
rameter lies in the interior of the parameter space, existing works have extended
Wald, QLR, and score tests from testing equality constraints against two-sided alter-
natives to testing equality constraints against one-sided alternatives. For example,

5In practice, researchers oftentimes ignore constraints in Θ when feasible. To simplify exposition,
in the rest of the paper, we refer to tests based on estimators without accounting for constraints in
Θ as the “classical” tests to distinguish them from the tests developed in this paper.
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Gourieroux et al. (1982) and Silvapulle and Sen (2005) study the null hypothesis of
Rwθ

∗ = r against Rwθ
∗ ≥ r in linear regression models and general parametric mod-

els respectively. This turns out to be a special case of (2) with R = Rw, r = rw, and
Θ =

{
θ ∈ Rl : Rwθ ≥ rw

}
. Silvapulle and Sen (2005) further consider testing the null

hypothesis of Rθ∗ = r against Rwθ ≥ rw, where R = (R′1,R
′
w)′ and r = (r′1, r

′
w)′. This

is another special case of (2) with Θ =
{
θ ∈ Rl : Rwθ ≥ rw

}
. In both cases, the weak

inequalities in the parameter space are known to bind under H0. As a result, there
is no implicit nuisance parameter. The asymptotic distributions of the test statistics
under the null hypothesis are continuous in model parameters. The standard plug-in
approach can be used to obtain critical values.

This paper relates closely to Andrews (2001), which studies the testing problem
of the point null hypothesis on the subvector of the parameter against the two-sided
alternative hypothesis under the maintained hypothesis. Uncertainty about the po-
sition of some parameters on the boundary or in the interior of the parameter space
is permitted, and the presence of an unidentified nuisance parameter under the null
hypothesis is also allowed. By assuming that the normalized “information” matrix is
block diagonal between those parameters that are known to lie on the boundary or
in the interior of the parameter space and those that are unknown, and by assuming
that the approximating cone of the parameter space is a product set, the asymptotic
distributions of the Wald and QLR test statistics in Andrews (2001) are continuous
in the implicit nuisance parameter.

For the subvector inference problem, Ketz (2018) introduces a Conditional Like-
lihood Ratio statistic based on sufficient statistic in normal distribution. Under the
assumption that some inequality constraints are empirically irrelevant, and that the
parameter space is a product set of the space for the parameter under testing and the
one for the nuisance parameter, Ketz (2018) shows that the asymptotic distribution
of the Conditional Likelihood Ratio statistic is nuisance parameter free.

In this paper, we focus on the null hypothesis of linear equality constraints and
the parameter space defined by linear equalities and inequalities. Without imposing
any assumption on the matrices R, Re, and Rw, the asymptotic distributions of some
test statistics, such as the Wald and QLR statistics in Andrews (2001), are in general
discontinuous in the implicit nuisance parameter. Identifying the implicit nuisance
parameter is therefore essential for conducting the uniform inference.

Once the implicit nuisance parameter is found, one can adapt any existing method
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for uniform inference, especially for subvector inference, to our framework. Subvec-
tor inference has been studied extensively in the current literature. Methods for
constructing asymptotically uniformly valid subvector inference in different contexts
have been proposed including Bounds tests, the least favorable approach, and tests
based on confidence sets for nuisance parameters, see Section 4.3.2 in Silvapulle and
Sen (2005) for a brief discussion of all three approaches.6 Among these propos-
als, the two-stage approach based on confidence sets for nuisance parameters and a
Bonferroni-type correction has proven to perform well.

There are several works that adopt this approach. Berger and Boos (1994) and Sil-
vapulle (1996) study some specific parametric testing problems. In a single-equation
instrumental variables regression with possibly “weak” instrumental variables, Staiger
and Stock (1997) construct a confidence region for the parameters based on such
method. Romano and Wolf (2000) construct a confidence interval for a univariate
mean that has finite sample validity. For moment equality models with overidentifying
inequality moment conditions, Moon and Schorfheide (2009) propose asymptotically
uniformly valid tests and confidence sets for the parameters of interest. Chernozhukov
et al. (2013) construct confidence intervals for marginal effects in non-linear panel data
models. For testing a finite number of moment inequalities, Romano et al. (2014) con-
struct asymptotically uniformly valid confidence sets for parameters characterized by
the moment inequalities. Finally, McCloskey (2017) considers general non-standard
testing problems in which the asymptotic distribution of a test statistic is discontin-
uous in a nuisance parameter under the null hypothesis. We refer interested readers
to Romano et al. (2014) and McCloskey (2017) for other related works using similar
two-step approaches.

The test statistics in Group II originate from the score statistics in Silvapulle and
Silvapulle (1995), Andrews (2001), and Silvapulle and Sen (2005), which focus on
the point null hypothesis on the subvector of the parameter. In this special case,
the matrix R in the null hypothesis is an identity matrix. Therefore the asymptotic
distributions of the test statistics do not involve computing the projection of a poly-
tope. This paper extends their tests to any parameter space and null hypothesis of
the forms (1) and (2).

6Wolak (1987, 1989, 1991) develops tests for the null hypothesis of inequality constraints based
on the least favorable approach. Silvapulle and Sen (2005) provide a comprehensive and systematic
treatment of constrained inference via the least favorable approach.
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Organization of the Rest of This Paper The rest of this paper is organized
as follows. In Section 2 we introduce the set-up, test statistics, assumptions, and
asymptotic distribution of the extremum estimator. In Section 3, we introduce the
concept of an implicit nuisance parameter and our algorithm for identifying it. In
Section 4, we first provide a detailed construction and technical treatment of an
asymptotically uniformly valid Wald test for the subvector hypothesis. We then
extend our result to the null hypothesis of linear equality constraints of the general
form. Sections 5 and 6 develop QLR and score tests respectively. Section 7 studies
the local power of all three tests. In Section 8, we present the remaining three tests
and develop the equivalence results among tests studied in the paper. Section 9
reports results from a simulation study and applies the methodology developed in
the paper to an empirical research question. The last section offers some concluding
remarks and extensions. Technical proofs are collected in Appendix S.1. Appendix
S.2 provides primitive conditions for the assumptions discussed in the paper for the
linear regression model.

Notation All limits are taken as n → ∞. For two vectors v, u ∈ Rl, v ≥ u means
that vj ≥ uj for j = 1, . . . , l; and ‖v‖ denotes the Euclidean norm of v. The sets Rl

>0

and Rl
≥0 denote

{
v ∈ Rl : v > 0

}
and

{
v ∈ Rl : v ≥ 0

}
respectively. For A being any

subset of a Euclidean space or some metric space, we use A to denote its closure. For
any two subsets A and B of a Euclidean space, the Hausdorff distance is defined as

dH (A,B) ≡ max

(
sup
a∈A

inf
b∈B
‖a− b‖ , sup

b∈B
inf
a∈A
‖a− b‖

)
.

2 The Model and Test Statistics

In this section, we introduce our model taken from Andrews (1999) and the three test
statistics that will be studied in detail in the paper. Section 8 presents the remaining
three tests.

Let ln (θ) denote the estimator objective function that depends on the data when
the sample size is n for n = 1, 2, .... The parameter space Θ is defined in (1), and takes
the form of a convex polytope. The matrix Rw is allowed to be row rank deficient to
incorporate constraints like 0 ≤ θ ≤ 1.
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2.1 An Extremum Estimator and Asymptotic Distribution

An extremum estimator denoted as θ̂ satisfies: θ̂ ∈ Θ and

ln

(
θ̂
)

= sup
θ∈Θ

ln (θ) + op (1) . (4)

Let θ∗ ∈ Θ denote the pseudo-true value of the parameter θ. The estimator objective
function ln (θ) has a quadratic expansion in θ around θ∗:

ln (θ) = ln (θ∗) +Dln (θ∗) (θ − θ∗)

+
1

2
(θ − θ∗)′D2ln (θ∗) (θ − θ∗) +Rn (θ) , (5)

where Rn (θ), Dln (θ∗), and D2ln (θ∗) satisfy the following assumptions:

Assumption 2.1. For all 0 < κ < ∞, supθ∈Θ:‖bn(θ−θ∗)‖<κ |Rn (θ)| = op (1) for some
scalar constants {bn : n ≥ 1} satisfying bn →∞;

Assumption 2.2. (b−1
n Dln (θ∗) ,Tn)

d→ (G,T ) for some random variables G ∈ Rl

and T ∈ Rl×l, where Tn ≡ −b−2
n D2ln (θ∗) and T is symmetric and non-singular with

probability one.

We further impose an assumption on the convergence rate of θ̂.

Assumption 2.3. bn
(
θ̂ − θ∗

)
= Op (1).

The above assumptions do not rule out the case where ln (·) is non-differentiable
at θ∗. When θ∗ is on the boundary of Θ and the estimator objective function is
not defined outside the parameter space, Dln (θ∗) could contain left or right partial
derivatives. Andrews (1997, 1999) offers detailed discussions on the assumptions and
provides sufficient conditions for them to hold. Note that instead of a general nor-
malizing matrix denoted as Bn in Andrews (1997, 1999), we adopt the special form
that Bn = bnIl×l as in Assumption 5∗ in Andrews (1999). This simplifies asymptotic
distribution of the extremum estimator under drifting sequences essential to the con-
struction of asymptotically uniformly valid tests. As stated in Andrews (1999), such
form of the normalizing matrix is applicable to most cases with non-trending data for
which bn =

√
n, although it is not applicable in dynamic models with deterministic

and/or stochastic trends such as the Dickey-Fuller Regression in Andrews (1999) or
the GARCH (1,q∗) example in Andrews (1997).
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Let Zn ≡ T −1
n b−1

n Dln (θ∗). The quadratic expansion can be alternatively ex-
pressed as

ln (θ) = ln (θ∗) +
1

2
Z ′nTnZn −

1

2
qn (bn (θ − θ∗)) +Rn (θ) , where

qn (λ) ≡ (λ− Zn)′Tn (λ− Zn) for λ ∈ Rl.

Under Assumptions 2.1-2.3, the lemma below follows from Theorem 3 (a) in An-
drews (1999).

Lemma 2.1. Suppose Assumptions 2.1-2.3 hold. Then

bn

(
θ̂ − θ∗

)
d−→ arg min

λ
[q (λ) + φθ (λ)] ,

where q (λ) = (λ− Z)′T (λ− Z), Z = T −1G, and

φθ (λ) =

0, if Reλ = 0 and Rw,bλ ≥ 0

∞, otherwise
,

for Rw,b being the submatrix of Rw composed of rows corresponding to the binding
inequalities in Rwθ

∗ ≥ rw.

For the parameter space Θ defined by linear equalities and inequalities in (1), it
is straightforward to show that the expression in Lemma 2.1 is the same as that in
Theorem 3 (a) in Andrews (1999). The asymptotic distribution of θ̂ depends on the
binding inequalities in Rwθ

∗ ≥ rw, and thus is discontinuous in Rwθ
∗ at rw.7

The model includes several well known examples in the literature. We present a
few below adopted from Andrews (1997).

Example 2.1. [Linear Regression] The model is expressed as

Yi = X ′iθ
∗ + εi, for i = 1, ..., n,

where (Xi, Yi)
n
i=1 is the random sample and E (εi|Xi) = 0. The objective function

ln (·) is expressed as

ln (θ) = −1

2

n∑
i=1

(Yi −X ′iθ)
2
.

7Different descriptions of Θ may result in different matrices Re and Rw,b. However, the set where
φθ (·) equals zero is independent of the description, see Lemma S.1.6 in Appendix S.1.
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We have bn =
√
n, Dln (θ) =

∑n
i=1 (YiXi −XiX

′
iθ), and D2ln (θ) = −

∑n
i=1XiX

′
i.

Example 2.2. [Generalized Method of Moments] Let g (Z, θ) be a vector of known
functions of the random variable Z, which is allowed to be non-differentiable. The
moment equations E [g (Z, θ∗)] = 0 hold at θ∗. With the random sample (Zi)

n
i=1, the

sample moment functions are computed as 1
n

∑n
i=1 g (Zi, θ). For some positive definite

weighting matrix Σn, ln (·) is defined as

ln (θ) = −n

(
1

n

n∑
i=1

g (Zi, θ)

)′
Σn

(
1

n

n∑
i=1

g (Zi, θ)

)
.

More discussion on the model can be found in Pakes and Pollard (1989) and Andrews
(1997).

2.2 The Test Statistics and Asymptotic Size

The Wald and QLR test statistics take the standard forms:

Wn ≡ b2
n

(
Rθ̂ − r

)′
(RΣW,nR

′)
−1
(
Rθ̂ − r

)
for some positive definite weighting matrix ΣW,n and

QLRn ≡ −2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

,

where θ̂0 is a restricted (by H0) estimator such that: θ̂0 ∈ Θ0 and

ln

(
θ̂0

)
= sup

θ∈Θ0

ln (θ) + op (1) .

To account for parameters on the boundary of the parameter space, we adopt
the following extension of the score test statistic introduced in Andrews (2001). It is
defined as a quadratic form in the directed score. For any θ ∈ Θ, we call Dln (θ) the
score function such that

Dln (θ) = Dln (θ∗) +D2ln (θ∗) (θ − θ∗) +RD
n (θ) , (6)

where Dln (θ∗) and D2ln (θ∗) are defined in (5), and RD
n (θ) is the remainder term

satisfying Assumption 6.3 (i) in Section 6. We do not require ln (θ) to have pointwise
partial derivative with respect to θ; when it does,Dln (θ) equals the vector of pointwise
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partial derivative of ln (θ) with respect to θ. Define the directed score dsn as

q̂R (dsn) = inf
λR∈bn(RΘ−r)

q̂R (λR) + op (1) , (7)

where

q̂R (·) ≡
(
· −RT̂ −1

n b−1
n Dln

(
θ̂0

))′ (
RT̂ −1

n R′
)−1 (

· −RT̂ −1
n b−1

n Dln

(
θ̂0

))
,

in which the matrix T̂n is assumed to approximate Tn. The score test statistic is
defined as

Sn ≡ ds′nΣ−1
S,ndsn, (8)

where the weighting matrix ΣS,n is positive definite.
Let Tn denote one of the above test statistics and the ones introduced in Section 8.

We now introduce the concept of asymptotic size of a test based upon Tn. Suppose the
model of interest is fully characterized by the finite dimensional parameter θ∗ ∈ Θ and
the infinite dimensional parameter ψ∗ ∈ Ψ characterizing the distribution of the data.
The space Ψ can be restricted to be some compact metric space with a metric that
induces weak convergence, see Andrews et al. (2011). Let ω ≡ (θ∗, ψ∗) ∈ W ; denote
Pω as the probability model indexed by ω and Prω as the probability computed with
respect to Pω. Let W0 be the collection of elements ω ∈ W consistent with the null
hypothesis and CVn be a (possibly) sample dependent critical value. The asymptotic
size of the resulting test is defined by

AsySz (Tn, CVn) ≡ lim sup
n→∞

sup
ω∈W0

Prω (Tn > CVn) .

In the following sections, we construct critical values for each of the test statistics
Wn, QLRn, and Sn that control the asymptotic size of the resulting tests and study
their local power.

3 Undetermined Inequality and Implicit Nuisance

Parameter

The critical step in developing asymptotically uniformly valid tests for H0 is to iden-
tify binding, non-binding, and undetermined inequalities in Rwθ

∗ ≥ rw under H0.
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Since the null parameter space Θ0 contains all the available information on θ∗, identi-
fying different types of inequalities in Rwθ

∗ ≥ rw is equivalent to identifying implicit
equalities, strictly redundant inequalities, and undetermined inequalities in the null
parameter space Θ0, where

Θ0 =
{
θ ∈ Rl : Rθ = r, Reθ = re, and Rwθ ≥ rw

}
.

This section proposes an approach for accomplishing this task and introduces
the concept of an implicit nuisance parameter. Specifically, for any θ ∈ Θ0, our
approach identifies inequalities in Rwθ ≥ rw of three types: those that are known
to bind (implicit equalities); those that are known not to bind (strictly redundant
inequalities); and those that are undetermined.

3.1 An Algorithm for Identifying Implicit Equalities, Strictly

Redundant Inequalities, and Undetermined Inequalities

We first incorporate information in equalities: Reθ = re and Rθ = r in Rwθ ≥ rw to
obtain a new system of linear inequalities. Let Γ and γ be such that the full set of
basic solutions to the system of linear equations:(

Re

R

)
θ =

(
re

r

)
(9)

is expressed by θ = Γθf + γ, where θf is a vector of lf free parameters, Γ is a l × lf
matrix, and γ is a l-vector. Then under H0, the system of linear inequalities in θ:
Rwθ ≥ rw becomes the system of linear inequalities in θf :

RwΓθf ≥ rw −Rwγ. (10)

Let η ≡ RwΓθ∗f . After incorporating the information in H0 and Reθ = re, some
inequalities in (10) will be known to bind and some will be known not to bind. To
distinguish among these three types of inequalities, we decompose η into ηb, ηnb, and
ηu composed of rows of η, such that the inequalities given by ηb in (10) are known to
bind, the inequalities given by ηnb are known not to bind, and finally the inequalities
given by ηu are undetermined.

For systems of weak linear inequalities, Telgen (1983) introduces implicit equalities

13



and strictly redundant inequalities and develops efficient algorithms STREINQ and
IMPLEQ for finding them. For the system of weak inequalities (10), define its feasible
set

W ≡
{
θf ∈ Rlf : RwΓθf ≥ rw −Rwγ

}
.

Let J ≡ {1, ..., lw} and the subscript (j) denote the jth row of a matrix or a vector.
For any j ∈ J, let

Wj ≡
{
θf ∈ Rlf : (RwΓ)(m) θf ≥ (rw −Rwγ)(m) ,∀m 6= j,m ∈ J

}
Definition 3.1. In the system of inequalities (10), for a given j ∈ J, the inequality:
(RwΓ)(j) θf ≥ (rw −Rwγ)(j) is an implicit equality if (RwΓ)(j) θf = (rw −Rwγ)(j) for
all θf ∈ W and is strictly redundant if (RwΓ)(j) θf > (rw −Rwγ)(j) for all θf ∈ Wj.

The following steps identify the collections of implicit equalities and strictly re-
dundant inequalities among (10). Denote uj (θf ) ≡ (RwΓ)(j) θf − (rw −Rwγ)(j).

Step a. Identify the implicit equalities in (10) as

Subb ≡ {j ∈ J : max {uj (θf ) : θf ∈ Wj} = 0} ;

Step b. Identify the strictly redundant inequalities in (10) as

Subnb ≡ {j ∈ J\Subb : min {uj (θf ) : θf ∈ Wj} > 0} .

Let Rb
w ∈ Rlb×l (Rnb

w ∈ Rlnb×l) denote the submatrix of Rw consisting of rows
with indices in Subb (Subnb). Denote Ru

w ∈ Rlu×l as the submatrix of Rw consisting
of rows that are not in Subb or Subnb; and let ruw be the corresponding subvector of rw.
Then ηb = Rb

wΓθ∗f , ηnb = Rnb
w Γθ∗f , ηu = Ru

wΓθ∗f , and the undetermined inequalities
are ηu ≥ ruw −Ru

wγ.

3.2 Implicit Nuisance Parameter

We now introduce the concept of an implicit nuisance parameter.

Definition 3.2. An implicit nuisance parameter, denoted as ηk, is defined as a sub-
vector of ηu corresponding to a row basis of Ru

wΓ.

We call ηk an implicit nuisance parameter, because it is in general a linear combi-
nation instead of a subvector of the original parameter θ∗. By definition, an implicit
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nuisance parameter is ηk = Ru
Γθ
∗
f , where Ru

Γ is a submatrix of Ru
wΓ with rows form-

ing a row basis of Ru
wΓ. When Ru

wΓ is of full row rank, Ru
Γ = Ru

wΓ and the implicit
nuisance parameter is ηk = ηu. When Ru

wΓ is not of full row rank with rank denoted
as lk, we compute Ru

Γ and Γu ∈ Rlu×lk such that Ru
wΓ = ΓuRu

Γ by Gauss-Jordan
elimination on the transpose of Ru

wΓ. In terms of the implicit nuisance parameter,
the undetermined inequalities in (10) become:

Γuηk ≥ ruw −Ru
wγ. (11)

Remark 3.1. Given Θ0 and θ ∈ Θ0, the undetermined inequalities among Rwθ ≥ rw

are unique. On the other hand, the implicit nuisance parameter may not be unique.
Although the dimensions of θf and ηk are uniquely determined by Θ0, free parameters
in (9) and row bases of Ru

wΓ are not unique.

We emphasize that for testing H0 against H1, the algorithm in this section needs
to be implemented only once regardless of the model, estimator and test statistic.
Once implicit equalities, strictly redundant inequalities, undetermined inequalities,
and the implicit nuisance parameter in Θ0 are identified using our algorithm, one can
adapt any existing two-stage approach for subvector inference to construct uniform
tests for H0 in any model and via any test statistic.

In the rest of this paper, we demonstrate this by constructing Wald, QLR, and
score tests for H0 in the model in Section 2. Since this paper focuses on studying the
effect of inequality constraints in Θ on inference, especially on the discontinuity of
the null asymptotic distribution of the chosen test statistic caused by the inequality
constraints, we impose the following assumption throughout the rest of this paper.

Assumption 3.1. The distribution of (G,T ) is not discontinuous in any unknown
parameters.

Typically, G is a Gaussian distribution with zero mean, and T is a deterministic,
symmetric and non-singular matrix.

3.3 Examples

Our approach for identifying an implicit nuisance parameter is applicable to any Re,
Rw, and R. We illustrate this by the following examples.
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Example 3.1. Let H0 : Rwθ
∗ = rw and H1 : Rwθ

∗ ≥ rw. This is the hypothesis
studied in Gourieroux et al. (1982) for linear regression model. Such hypotheses
can be alternatively expressed as H0 : Rwθ

∗ = rw against H1 : Rwθ
∗ 6= rw for

Θ =
{
θ ∈ Rl : Rwθ ≥ rw

}
. It is apparent that all the inequalities in Rwθ

∗ ≥ rw

are binding under the null. There is no Rnb
w or Ru

w, and thus no implicit nuisance
parameter.

Example 3.2. Let H0 : (R′1,R
′
w)′ θ∗ = (r′1, r

′
w)′ and H1 : (R′1,R

′
w)′ θ∗ 6= (r′1, r

′
w)′

for Θ =
{
θ ∈ Rl : Rwθ ≥ rw

}
. Similar to Example 3.1, all the inequalities among

Rwθ
∗ ≥ rw are binding under the null. Kodde and Palm (1986) and Silvapulle and

Sen (2005) both consider such case in general parametric models.

Example 3.3. Consider testing H0 : Rw,1θ
∗ = r against H1 : Rw,1θ

∗ 6= r for Θ ={
θ ∈ Rl : Rwθ ≥ rw

}
, where Rw =

(
R ′w,1,R

′
w,2

)′. The set Θ0 is expressed as

Θ0 =
{
θ ∈ Rl : Rw,1θ = r,Rwθ ≥ rw

}
.

For the first J inequalities in Rwθ ≥ rw, we can easily determine whether they
are binding or not binding by comparing values of elements in r with that of rw,1,
where rw =

(
r′w,1, r

′
w,2

)′. Since the null hypothesis contains information about θ∗,
the algorithm in Section 3 can be applied to identify inequalities in Rw,2θ

∗ ≥ rw,2 of
three types and an implicit nuisance parameter. The subvector hypothesis extensively
studied in the current literature is a special case of H0 when

Rw =

(
Rw,1

Rw,2

)
=

(
Rw,11 0

0 Rw,22

)

and Rw,22 has full row rank. In this case, the implicit nuisance parameter ηk =

Rw,22θ2, where θ = (θ′1, θ
′
2)′ is decomposed conformably.

Example 3.4. Let l = 8, θ = (θ1, . . . , θ8)′,

Θ = {θ : θ1 ≥ 0,−θ1 ≥ −1, θ1 + θ2 ≥ −1, θ2 + θ3 ≥ 0, θ3 + θ4 ≥ −1,

θ5 + θ7 − θ8 ≥ 0, 2θ5 + θ6 + θ7 ≥ 0, θ5 − θ6 + 2θ7 − 3θ8 ≥ 0} ,
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and H0 : θ∗2 = θ∗3 = θ∗4 = 0. This is a non-subvector hypothesis, with

Rw =



1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 0 1 −1

0 0 0 0 2 1 1 0

0 0 0 0 1 −1 2 −3


and r =



0

−1

−1

0

−1

0

0

0


.

One gets θf = (θ1, θ5, θ6, θ7, θ8)′ and γ = 0. Since

(RwΓ)(3) θf − (rw −Rwγ)(3) = θ1 + 1 > 0 for θf ∈ S3,

(RwΓ)(4) θf − (rw −Rwγ)(4) = 0 + 0 = 0 for θf ∈ S4, and

(RwΓ)(5) θf − (rw −Rwγ)(5) = 0 + 1 > 0 for θf ∈ S5,

we obtain that Subb = {4}, Subnb = {3, 5}, and

Ru
wΓ =


1 0 0 0 0

−1 0 0 0 0

0 1 0 1 −1

0 2 1 1 0

0 1 −1 2 −3

 .

Since the rows of RuΓ are linearly dependent, we proceed to the next step to find the
nuisance parameter ηk.

The Gauss-Jordan elimination on the transpose of Ru
wΓ provides us that

(Ru
wΓ)′ =


1 −1 0 0 0

0 0 1 2 1

0 0 0 1 −1

0 0 1 1 2

0 0 −1 0 −3


Gauss-Jordan elimination−→


1 −1 0 0 0

0 0 1 0 3

0 0 0 1 −1

0 0 0 0 0

0 0 0 0 0

 .

We obtain that the first, third, and fourth rows of Ru
wΓ constitute a row basis of
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Ru
wΓ. Further, we get that

Γu =


1 0 0

−1 0 0

0 1 0

0 0 1

0 3 −1

 and ηk =

 θ∗1

θ∗5 + θ∗7 − θ∗8
2θ∗5 + θ∗6 + θ∗7

 .

The number of nuisance parameters is smaller than the dimension of Ru
wΓθf .

Example 3.5. We introduce the following parameter space Θ that will be used in
the simulation study in Section 9.1 and in the empirical application in Section 9.2.
Let Θ = {θ ∈ R4 : Rwθ ≥ 0} with

Rw =


−1 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

 ,

and the null hypothesis be H0 : Rθ∗ = r with

R =

(
1 0 0 0

0 −1 0 1

)
and r =

(
0

0.1

)
.

Solving Rθ = r, we get θ = Γθf + γ, where

Γ =


0 0

1 0

0 1

1 0

 , θf =

(
θ2

θ3

)
, and γ =


0

0

0

0.1

 .

Then Rwθ ≥ 0 becomes RwΓθf ≥ 0−Rwγ for

RwΓ =


0 0

1 0

−1 1

1 −1

 and 0−Rwγ =


0

0

0

−0.1

 .

By definition, we have Subb = {1} and Subnb = ∅.
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Applying the Gauss-Jordan elimination on the transpose of Ru
wΓ:

(Ru
wΓ)′ =

(
1 −1 1

0 1 −1

)
Gauss-Jordan elimination−→

(
1 0 0

0 1 −1

)
,

we obtain Ru
Γ as the first and second row of Ru

wΓ,

Γu =

 1 0

0 1

0 −1

 , and ηk = Ru
Γθ
∗
f =

(
θ∗2

−θ∗2 + θ∗3

)
.

4 The Wald Test

In this section, we construct an asymptotically uniformly valid Wald test using the
statistic Wn introduced in Section 2.2 and provide a detailed procedure for imple-
menting it. The following assumption is on the weighting matrix.

Assumption 4.1. ΣW,n
p→ ΣW for which RΣWR

′ is positive definite with probability
one.

The asymptotic distribution of Wn under H0 is given in the Lemma below.

Lemma 4.1. Under H0 and Assumptions 2.1-2.3 and 4.1, it holds that

Wn
d−→ W ≡ (RΨ)′ (RΣWR

′)
−1

(RΨ) ,

where Ψ ≡ arg minλ [q (λ) + φ (λ)], in which q (λ) is defined in Lemma 2.1 and

φ (λ) =

0, if Reλ = 0, Rb
wλ ≥ 0 and Ru

w,bλ ≥ 0

∞, otherwise
,

with Ru
w,b being the submatrix of Ru

w corresponding to the binding inequalities in (11).

Lemma 4.1 implies that the asymptotic distribution of Wn under H0 depends on
the implicit nuisance parameter ηk through the undetermined inequalities in Θ0, i.e.,
(11). Moreover, it is discontinuous in the implicit nuisance parameter when it exists.

Example 3.1 (continued). In this example, there is no implicit nuisance parameter
and Rb

w = Rw. Applying Lemma 4.1, we obtain that

Wn
d−→ W = (RwΨ)′ (RwΣWR ′w)

−1
(RwΨ) ,
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where Ψ = arg minRwλ≥0 (λ−T −1G)
′
T (λ−T −1G). If further G ∼ N (0,T ) and

ΣW = T −1, then the distribution ofW is of the same form as ξW in Gourieroux et al.
(1982), which is proved by Gourieroux et al. (1982) to follow a weighted chi-squared
distribution. For more discussions and derivations on the weighted chi-squared distri-
bution, please refer to Bartholomew (1961), Kudo (1963), Nüesch (1966), and Perlman
(1969).

In the rest of this paper, we focus on the case where the implicit nuisance pa-
rameter ηk exists. For clarity and to be self-contained, we first provide a detailed
treatment in Section 4.1 of the subvector hypothesis of the form:

H0S : θ∗1 = r against H1S : θ∗1 6= r,

where θ∗1 ∈ RJ is a subvector of θ∗ such that θ∗ = (θ∗′1 , θ
∗′
2 )′, under the maintained

hypothesis that Θ =
{
θ ∈ Rl : θ ≥ 0

}
. Then we extend it to the general H0 in Section

4.2.

4.1 Subvector Hypothesis

For the subvector hypothesis H0S, Example 3.3 shows that the implicit nuisance
parameter is ηk = θ∗2. The Wald statistic is calculated by

Wn = b2
n

(
θ̂1 − r

)′
(RΣW,nR

′)
−1
(
θ̂1 − r

)
, with R =

(
IJ×J 0

0 0

)
.

Without loss of generality, assume that r = (0′, r′nb)
′, where rnb ∈ RJ−Jb

>0 . Applying
Lemma 4.1 to this case with Rw = Il×l and rw = 0, we obtain Wn

d→ W with

φ (λ) =

0, if λj ≥ 0 for j = 1, . . . , Jb and λj ≥ 0 for j ∈ J

∞, otherwise
,

where elements in J are the indices corresponding to zero elements in θ∗2. The asymp-
totic distribution of Wn is discontinuous in ηk = θ∗2 at 0, unless T is block diagonal
between θ1 and θ2, see Andrews (2001).
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4.1.1 The Null Asymptotic Distribution Under Drifting Sequences

We decompose the model parameter ω ∈ W0 into three groups:
(
ηk, πW , ξ

)
based on

their effects on the asymptotic distribution of Wn. πW ∈ ΠW contains parameters in
G, T , and ΣW ; and ξ ∈ Ξ consists of all other parameters and is infinite dimensional.
From the previous discussion, the null asymptotic distribution of Wn is discontinuous
in ηk; πW affects the limiting distribution of Wn but not its continuity; ξ doesn’t
affect the limiting distribution of Wn given ηk and πW .

Following Andrews et al. (2011), Andrews and Cheng (2012), Andrews and Cheng
(2014), and Cheng (2015), we establish the asymptotic distribution of Wn under
drifting parameter sequences ωn ∈ W0 → ω ∈ W0.8 For brevity, throughout the
paper the terminology “ωn ∈ W0” refers to “drifting parameter sequence ωn ∈ W0

with limit ω ∈ W0”. Under the null hypothesis, θn =
(
r′, θ′2,n

)′ has the limit θω =(
r′, θ′2,ω

)′. Let R≥0 ≡ R≥0∪{+∞}. In particular, we consider the parameter sequence{(
ηkn, πW,n, ξn

)
∈ Rl−J

≥0 × ΠW × Ξ : n ≥ 1
}
and the localization parameter (c, πW,ω) as

the limit of bnηkn and πW,n:

bnη
k
n = bnθ2,n → c ∈ Rl−J

≥0 and πW,n → πW,ω ∈ ΠW .

Notice that this is a definition rather than an assumption, because elements in c are
not required to be finite. As shown in the lemma below, the asymptotic distribution
of Wn under the null hypothesis and the drifting parameter sequence

(
ηkn, πW,n, ξn

)
depends on c and πW,ω; whereas ξn (or the limiting value ξω of ξn) does not affect the
limiting distribution under any parameter sequence ηkn and πW,n.

The estimator objective function ln (θ) has a quadratic expansion in θ around θn:

ln (θ) = ln (θn) +Dln (θn) (θ − θn)

+
1

2
(θ − θn)′D2ln (θn) (θ − θn) +Rn (θ) ,

where Rn (θ), Dln (θn), and D2ln (θn) satisfy the following assumptions.

Assumption 4.2. For any Pω with ω ∈ W0, supθ∈Θ:‖θ−θω‖<κn |Rn (θ)| = op (1) for
all κn = o (1).

8We focus our discussion on the sequence of ωn in the main text, and later relate the result under
the full sequence to that under the subsequence in the proof using Lemma 2.1 in Andrews et al.
(2011).
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Assumption 4.3. For any ωn ∈ W0, (b−1
n Dln (θn) ,Tn)

d→ (Gω,Tω) for some random
variables Gω ∈ Rl and Tω ∈ Rl×l, where Tn ≡ −b−2

n D2ln (θn) and Tω is symmetric
and non-singular with probability one.

The next assumption is on the convergence rate of θ̂ under the drifting parameter
sequence.

Assumption 4.4. For any ωn ∈ W0, bn
(
θ̂ − θn

)
= Op (1).

Assumption 4.2 is slightly stronger than Assumption 2.1 by requiring the quadratic
approximation to be accurate in a small neighborhood of θω for each model Pω.
Nevertheless, it is still an assumption on the local property of the objective function,
because we do not need the remainder term to be small uniformly over the parameter
space of θ. Assumptions 4.3 and 4.4 are also stronger than their counterparts in
Section 2.1. They require the normalizing constants bn to be the same for all ωn ∈ W0.
Tools like Lindeberg-Feller Central Limit Theorem can be employed to verify these
assumptions for which the existence of bounded higher moments is often enough.
In Appendix S.2, we discuss primitive conditions for Assumptions 4.2-4.4 to hold in
Example 2.1.

The following assumption is on the weighting matrix. It is satisfied if ΣW,ω is
positive definite with probability one.

Assumption 4.5. For any ωn ∈ W0, ΣW,n
p→ ΣW,ω for which RΣW,ωR

′ is positive
definite with probability one.

The asymptotic null distribution of Wn for any ωn ∈ W0 is given in the following
lemma.

Lemma 4.2. (i) If Assumptions 4.2-4.4 hold, then under H0S : θ∗1 = r and any
ωn ∈ W0,

bn

(
θ̂ − θn

)
d−→ Ψω ≡ arg min

λ
[qω (λ) + φω (λ)] ,

where qω (λ) = (λ− Zω)′Tω (λ− Zω), Zω = T −1
ω Gω, and

φω (λ) =


0, if λj ≥ 0 for j = 1, . . . , Jb

and λk+J + ck ≥ 0 for k = 1, . . . , l − J

∞, otherwise

.

(ii) If further Assumption 4.5 holds, then Wn
d→ Wω ≡ (RΨω)′ (RΣW,ωR

′)−1 (RΨω).
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4.1.2 The Testing Procedure

As shown in Lemma 4.2, the null asymptotic distribution of Wn under the drifting
sequence of distributions depends on the value of (c, πW,ω). Let CWc,πW,ω (1− τ) denote
the (1− τ) quantile of the distribution of Wω given c and πW,ω. It may not have a
closed form expression but can be simulated. Building on existing work, especially
McCloskey (2017), we adopt the two-step approach with Bonferroni-type correction
to construct an asymptotically uniformly valid test for subvector hypothesis H0S.

The detailed process consists of the following steps.
Step 1. (i) Find the consistent estimator π̂W such that for any ωn ∈ W0,

π̂W
p→ πW,ω; (ii) Construct the confidence set Ĩτ for c such that for any ωn ∈ W0,

limn→∞ Prωn

(
c ∈ Ĩτ

)
≥ τ .

Consistent estimator for πW,ω is easy to obtain in general, because πW,ω consists
of the parameters in Gω, Tω, and ΣW,ω, which are usually variance covariance matrix
and Hessian matrix of the limit of the objective function. We provide one way of
constructing the confidence set Ĩτ for c. Define the unrestricted extremum estimator
for θ2,n as θ̃2 such that

ln

(
r, θ̃2

)
= sup

θ2∈Rl−J
ln (r, θ2) + op (1) .

Let c̃ = bnθ̃2. It can be shown that c̃ d→ c + T −1
2,ω G2,ω, where G2,ω and T2,ω are the

subvector of Gω and submatrix of Tω corresponding to θ2. Denote ES (τ) as the set
such that Pr

(
T −1

2,ω G2,ω ∈ ES (τ)
)
≥ 1 − τ . Since the parameter space for c is Rl−J

≥0 ,
we obtain a confidence set Ĩτ as Ĩkτ ∩ Rl−J

≥0 , where Ĩkτ ≡ c̃− ẼS (τ) and ẼS (τ) is the
set obtained using estimators of the parameters in T −1

2,ω G2,ω rather than true values.
To ensure the non-emptiness of Ĩkτ ∩ Rl−J

≥0 , ES (τ) may not be equal-tailed.
Step 2. We construct the α level Bonferroni critical value as

CV W
n (α, τ) ≡ sup

c∈Ĩα−τ
CWc,π̂W (1− τ) , (12)

for some 0 ≤ τ ≤ α.
The following two theorems show that the Wald test for H0S has the correct

asymptotic size and is consistent.

Theorem 4.1. Under Assumptions 3.1 and 4.2-4.5, ifWω is continuous at CWc,πW,ω (1− τ)
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for all (c, πW,ω) ∈ Rl−J
≥0 × ΠW , then it holds that AsySz

(
Wn, CV

W
n (α, τ)

)
≤ α.

The continuity assumption in Theorem 4.1 may restrict the range of τ . In the
case that Θ = {(θ1, θ2) ∈ R2 : θ1 ≥ 0 and θ2 ≥ 0} and H0 : θ1 = 1, it is satisfied for
all τ ∈ (0, 1). With the same parameter space but H0 : θ1 = 0, this assumption is
satisfied for τ < 0.5.

Theorem 4.2. Under H1 and Assumptions 2.3 and 4.1, Pr
(
Wn > CV W

n (α, τ)
)
→ 1.

4.2 General Linear Hypothesis

We extend the subvector test developed in Section 4.1 to H0 for any Re, Rw, and
R. By extracting linearly independent components of ηu, we consider the model
parameters

(
ηk, πW , ξ

)
, where ηk ∈ Hk ⊆ Rlk is the implicit nuisance parameter, πW ∈

ΠW consists of parameters in G, T , and ΣW , and ξ ∈ Ξ contains all other parameters
and is infinite dimensional. Similar to the discussion in Section 4.1, the asymptotic
distribution of Wn is discontinuous in ηk; πW affects the limiting distribution of
Wn but not its continuity; ξ doesn’t affect the limiting distribution of Wn. Let(
ηkn, πW,n, ξn

)
be the drifting model parameters. Since the implicit nuisance parameter

ηkn satisfies inequalities in (11), we consider localization parameter c such that

c ≡ lim
n→∞

bn
(
Γuηkn − (ruw −Ru

wγ)
)
∈ C ⊆ Rlu

≥0, (13)

where

C ≡
{
c ∈ Rlu

≥0 : ∃ηkn ∈ Hk and c = lim
n→∞

bn
(
Γuηkn − (ruw −Ru

wγ)
)}

.

The limits of πW,n and ξn are denoted as πW,ω and ξω respectively.

Lemma 4.3. (i) If Assumptions 4.2-4.4 hold, then under H0 : Rθ∗ = r and any
parameter sequence

(
ηkn, πW,n, ξn

)
∈ Hk × ΠW × Ξ,

bn

(
θ̂ − θn

)
d−→ Ψω ≡ arg min

λ
[qω (λ) + φω (λ)] ,

where qω (λ) = (λ− Zω)′Tω (λ− Zω), Zω = T −1
ω Gω, and

φω (λ) =

0, if Reλ = 0, Rb
wλ ≥ 0 and Ru

wλ+ c ≥ 0

∞, otherwise
;
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(ii) If further Assumption 4.5 holds, then Wn
d→ Wω ≡ (RΨω)′ (RΣW,ωR

′)−1 (RΨω).

The null asymptotic distribution ofWn stated in Lemma 4.3 suggests the following
procedure for computing the critical value of our test.

Step 1. (i) Find the consistent estimator π̂W such that for any ωn ∈ W0,
π̂W →p πW,ω; (ii) Construct the confidence set Ĩτ for c such that for any ωn ∈ W0,
limn→∞ Prωn

(
c ∈ Ĩτ

)
≥ τ .

πW,ω is composed of the parameters in Gω, Tω, and ΣW,ω. It is usually straight-
forward to obtain the consistent estimator of πW,ω. The confidence set for c can be
constructed by the following procedure. By definition, ηkn = Ru

Γθf,n. Denote θ̃f as the
unrestricted extremum estimator for θf,n:

ln

(
Γθ̃f + γ

)
= sup

θf∈R
lf

ln (Γθf + γ) + op (1) .

Applying Lemma 4.3, one can show that bn
(
θ̃f − θf,n

)
d→ T −1

f,ωGf,ω, where Gf,ω

and Tf,ω are the subvector of Gω and submatrix of Tω corresponding to θf . Thus
bn

(
Ru

Γ θ̃f,n −Ru
Γθf,n

)
d→ Ru

ΓT −1
f,ωGf,ω. Denote ES (τ) as set such that

Pr
(
Ru

ΓT −1
f,ωGf,ω ∈ ES (τ)

)
≥ 1− τ.

We obtain Ĩkτ as bnRu
Γ θ̃f,n − ẼS (τ), where ẼS (τ) is obtained by using estimators

of parameters in T −1
f,ωGf,ω rather than true values. The confidence set Ĩτ for c is

calculated as

Ĩτ =
{

c ∈ Rlu
≥0 : c = Γuι− bn (ruw −Ru

wγ) , ι ∈ Ĩkτ
}
. (14)

To ensure that Ĩτ is non-empty, ES (τ) may not be equal-tailed.
Step 2. Compute the α level Bonferroni critical value as

CV W
n (α, τ) ≡ sup

c∈Ĩα−τ
CWc,π̂W (1− τ)

for some 0 ≤ τ ≤ α, where CWc,πW,ω (1− τ) is the (1− τ) quantile of Wω in Lemma 4.3
given (c, πW,ω). For any given (c, πW,ω), the distribution Wω may not have a closed
form expression but can be simulated.

The following two theorems establish the asymptotic validity and consistency of
the Wald test.
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Theorem 4.3. Assume that Wω is continuous at CWc,πW,ω (1− τ) for all (c, πω) ∈ C ×
ΠW . Under Assumptions 3.1 and 4.2-4.5, it holds that AsySz

(
Wn, CV

W
n (α, τ)

)
≤ α.

Theorem 4.4. Under H1 and Assumptions 2.3 and 4.1, Pr
(
Wn > CV W

n (α, τ)
)
→ 1.

5 The Quasi Likelihood Ratio Test

Recall that Θ0 denotes the parameter space under the null hypothesis H0 : Rθ∗ = r

and is given by (3). The algorithm in Section 3.1 generates Rb
w, Rnb

w , and Ru
w,

which are submatrices of Rw corresponding to implicit equalities, strictly redundant
inequalities, and undetermined inequalities. Partition rw conformably into subvectors
rbw, rnbw , and ruw. Since inequalities defined by Rnb

w are strictly redundant, the parameter
space under H0 can be rewritten as

Θ0 =
{
θ ∈ Rl : Rθ = r, Reθ = re, Rb

wθ = rbw, and Ru
wθ ≥ ruw

}
.

We impose the following assumption on the convergence rate of the restricted
estimator θ̂0 defined in Section 2.2. Primitive conditions for this assumption can be
found in Andrews (1997).

Assumption 5.1. bn
(
θ̂0 − θ∗0

)
= Op (1) for some θ∗0 ∈ Θ0.

We call θ∗0 the pseudo-true value of θ in Θ0. Under H0, it holds that θ∗0 = θ∗;
while θ∗0 6= θ∗ under H1.

The lemma below provides the asymptotic distribution of QLRn under H0. Defi-
nitions of q (·) and φ (·) are the same as in Lemma 4.1.

Lemma 5.1. Under H0 and Assumptions 2.1-2.3 and 5.1, it holds that

QLRn
d−→ QLR ≡ min

λ
[q (λ) + φ0 (λ)]−min

λ
[q (λ) + φ (λ)] ,

where

φ0 (λ) =

0, if
(
R′,R ′e,R

b′
w

)′
λ = 0 and Ru

w,bλ ≥ 0

∞, otherwise
.

Note that φ (·) and φ0 (·) differ in two parts. First, φ0 (λ) contains equalities
Rλ = 0, because Θ0 is defined under the null hypothesis. Second, inequalities Rb

wλ ≥
0 in φ (λ) become equalities Rb

wλ = 0 in φ0 (λ). The null hypothesis allows us to
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determine some binding inequalities, which are represented by Rb
w. On the other

hand, inequalities Rb
wθ ≥ rbw serve as equality constraints Rb

wθ = rbw when computing
θ̂0 and ln

(
θ̂0

)
.

Example 3.1 (continued). There is no Re or Ru
w,b, and R = Rb

w. Lemma 5.1 shows
that

QLRn
d−→ QLR = min

Rwλ=0

(
λ−T −1G

)′
T
(
λ−T −1G

)
− min

Rwλ≥0

(
λ−T −1G

)′
T
(
λ−T −1G

)
.

When ΣW = T −1, Lemma S.1.7 shows that QLR follows the same distribution as W
using the duality of the optimization problem (see Ekeland (1974)). However, such
result doesn’t hold for general Θ and H0. If G ∼ N (0,T ), then QLR follows a
weighted chi-squared distribution.

Comparing Lemmas 4.1 and 5.1, the asymptotic distributions of Wn and QLRn

share the similarity that they both depend on the binding inequalities in Ru
wθ
∗ ≥ ruw

and are discontinuous in the implicit nuisance parameter ηk. Because the idea for
conducting uniform inference for test based upon QLRn is analogous to that based
upon Wn, certain details are omitted in the following discussion.

With Assumption 5.2 on the convergence rate of θ̂0 under ωn ∈ W0, the following
lemma states the asymptotic distribution of QLRn under drifting model parameters(
ηkn, πQ,n, ξn

)
, where πQ ∈ ΠQ contains parameters in G and T . The vector c is

defined in (13). The asymptotic distributions of Wn and QLRn under drifting model
parameters depend on the same localization parameter vector c.

Assumption 5.2. For any ωn ∈ W0, bn
(
θ̂0 − θn

)
= Op (1).

Lemma 5.2. If Assumptions 4.2-4.4 and 5.2 hold, then under H0 : Rθ∗ = r and any
parameter sequence

(
ηkn, πQ,n, ξn

)
∈ Hk × ΠQ × Ξ,

QLRn
d−→ QLRω ≡ min

λ
[qω (λ) + φ0,ω (λ)]−min

λ
[qω (λ) + φω (λ)] ,

where qω (·) and φω (·) are defined in Lemma 4.3 (i) and

φ0,ω (λ) =

0, if
(
R′,R ′e,R

b′
w

)′
λ = 0 and Ru

wλ+ c ≥ 0

∞, otherwise
.
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Let CQc,πQ,ω (1− τ) denote the (1− τ) quantile of QLRω given c and πQ,ω for 0 ≤
τ ≤ α. The α level Bonferroni critical value CV Q

n (α, τ) is defined as

CV Q
n (α, τ) ≡ sup

c∈Ĩα−τ
CQc,π̂Q (1− τ) ,

where Ĩα−τ and π̂Q are obtained by similar procedures presented by Step 1 in Section
4.2. The following theorems show that CV Q

n (α, τ) controls the asymptotic size of QLR
test and the test is consistent.

Theorem 5.1. Under Assumptions 3.1, 4.2-4.4, and 5.2, if QLRω is continuous at
CQc,πQ,ω (1− τ) for all (c, πQ,ω) ∈ C ×ΠQ, then AsySz

(
QLRn, CV

Q
n (α, τ)

)
≤ α holds.

Theorem 5.2. Under H1 and Assumptions 2.1-2.3 and 5.1, if ln (·) is continuous at
θ∗0 and b−2

n (ln (θ∗)− ln (θ∗0))
p→ ς > 0, then Pr

(
QLRn > CV Q

n (α, τ)
)
→ 1 holds.

The condition b−2
n (ln (θ∗)− ln (θ∗0))

p→ ς > 0 in Theorem 5.2 is generally satisfied
as the identification assumption.

Example 2.2 (continued). Let Σn
p→ Σ for which Σ is positive definite with proba-

bility one. We then have

n−1 (ln (θ∗)− ln (θ∗0)) =

(
1

n

n∑
i=1

g (Zi, θ
∗
0)

)′
Σn

(
1

n

n∑
i=1

g (Zi, θ
∗
0)

)

−

(
1

n

n∑
i=1

g (Zi, θ
∗)

)′
Σn

(
1

n

n∑
i=1

g (Zi, θ
∗)

)
p−→ E [g (Z, θ∗0)]′ΣE [g (Z, θ∗0)] .

Assumption b−2
n (ln (θ∗)− ln (θ∗0))

p→ ς > 0 in Theorem 5.2 is satisfied as long as
E [g (Z, θ∗0)] 6= 0 for θ∗0 6= θ∗, which is assumed for the identification of θ∗.

6 The Score Test

Let the following two assumptions hold for the score function, directed score, and
score test statistic defined in (6), (7), and (8). Discussion on the assumptions can be
found in Andrews (2001).
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Assumption 6.1. (i) Assume that for all 0 < κ <∞, supθ∈Θ0:‖bn(θ−θ∗0)‖<κ
∣∣b−1
n RD

n (θ)
∣∣ =

op (1); (ii) T̂n = −b−2
n D2ln (θ∗0) + op (1).

Assumption 6.2. ΣS,n
p→ ΣS for which ΣS is positive definite with probability one.

By definition, R ∈ RJ×l and J ≤ l. The polytope RΘ− r can be represented by

RΘ− r =
{
λ ∈ RJ : ∃θ ∈ Θ, λ = Rθ − r

}
.

Let the following be a halfspace description of RΘ− r:

RΘ− r =
{
λ ∈ RJ : RR,eλ = rR,e and RR,wλ ≥ rR,w

}
. (15)

Such description always exists, because the affine map of a polytope is a polytope,
and every polytope can be represented by a halfspace description (Henk et al. (2004)).
For any null hypothesis consistent with the parameter space, there exists some θ ∈ Θ

such that Rθ = r. Therefore, it holds that 0 ∈ RΘ − r. Consequently, we have
rR,e = 0 and rR,w ≤ 0. The limit of bn (RΘ− r) in the sense of Hausdorff distance is
given by

ΛR ≡
{
λ ∈ RJ : RR,eλ = 0 and RR,w,bλ ≥ 0

}
, (16)

where RR,w,b is the submatrix of RR,w composed of rows corresponding to the zero
elements in rR,w.

As we show in Section 6.1 below, the null asymptotic distribution of Sn depends
on ΛR. When J = l, R is a square and invertible matrix. It is straightforward to
find ΛR. To see this, we note that the halfspace description of the polytope RΘ − r
is characterized by

RR,e = ReR
−1, rR,e = re −ReR

−1r = 0 and

RR,w = RwR
−1, rR,w = rw −RwR

−1r ≤ 0.

The set ΛR such that dH (bn (RΘ− r) ,ΛR) → 0 is given by (16) with RR,w,b being
the submatrix of RwR

−1 composed of rows corresponding to the zero elements in
rw −RwR

−1r.
When J < l, RΘ − r is an affine projection of the polytope Θ onto a lower

dimensional space. Its limit ΛR is in general not straightforward to compute. In
Section 6.2, we provide an algorithm for obtaining the set ΛR.
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6.1 Asymptotic Theory

With description (16), the asymptotic distributions of ds and Sn are given in the
following lemma.

Lemma 6.1. (i) Suppose the null hypothesis and Assumptions 2.2, 5.1, and 6.1 hold.
Then

dsn
d−→ ds ≡ arg min

λ
[qR (λ) + φR (λ)] ,

where qR (λ) = (λ−RZ)′ (RT −1R′)
−1

(λ−RZ), Z = T −1G, and

φR (λ) =

0, if RR,eλ = 0 and RR,w,bλ ≥ 0

∞, otherwise
;

(ii) If further Assumption 6.2 holds, then Sn
d→ S ≡ ds′Σ−1

S ds.

The most significant difference between S in Lemma 6.1 and W in Lemma 4.1 or
QLR in Lemma 5.1 is that the distribution of S is not discontinuous in the implicit
nuisance parameter ηk, because RR,w,b is known under H0. That is, whether θ∗ is on
the boundary of Θ is unknown under the null hypothesis, which leads to discontinuity
of the distributions of W and QLR in ηk; but whether Rθ∗ is on the boundary of RΘ

is known, because Rθ∗ = r under the null hypothesis. Therefore, underH0 the limit of
bn (Θ− θ∗) is undetermined in general, but the limit of bn (RΘ−Rθ∗) = bn (RΘ− r)
is determined. Since dsn is the projection of RT̂ −1

n b−1
n Dln

(
θ̂0

)
onto bn (RΘ− r), its

asymptotic distribution depends on the known limit of bn (RΘ− r). Thus, parameters
in G, T , and ΣS are the only unknown components in the distributions of ds and S.
Since the distributions are continuous in those parameters, inference procedure based
on the conventional plug-in approach controls the asymptotic size.

Example 3.1 (continued). In this special case, the set RΘ−r can be easily obtained
as

RΘ− r =
{
λ ∈ RJ : λ ≥ 0

}
.

Lemma 6.1 implies that Sn
d→ S = ds′Σ−1

S ds, where

ds = arg min
λ≥0

(
λ−RwT −1G

)′ (
RwT −1R ′w

)−1 (
λ−RwT −1G

)
.

For ΣS = RwT −1R ′w, Lemma S.1.7 shows that S = QLR.
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To study the asymptotic size of the score test, we impose the following assumption
extending Assumptions 6.1 and 6.2.

Assumption 6.3. Assume that for any ωn ∈ W0, (i) supθ∈Θ:‖θ−θω‖<κn

∣∣b−1
n RD

n (θ)
∣∣ =

op (1) for all κn = o (1); (ii) T̂n = Tn + op (1); and (iii) ΣS,n
p→ ΣS,ω for which ΣS,ω

is positive definite with probability one.

Let CSπS (1− α) denote the (1− α) quantile of S, where πS ∈ ΠS contains param-
eters in G, T , and ΣS. The critical value for the α level score test is computed as
CV S

n (α) ≡ CSπ̂S (1− α), where π̂S is some consistent estimator of πS for any ωn ∈ W0.
For the test based upon Sn with CV S

n (α), the following theorem shows that the
asymptotic size is equal to α.

Theorem 6.1. Under Assumptions 3.1, 4.3, 5.2, and 6.3, if S is continuous at
CSπS (1− α) for all πS ∈ ΠS, then it holds that AsySz

(
Sn, CV

S
n (α)

)
= α.

The consistency of the score test relies on the shape of ln (·). In the following
theorem, we provide sufficient conditions for the score test to be consistent.

Theorem 6.2. Under H1 and Assumptions 5.1, 6.1, and 6.2, if T −1
n b−2

n Dln (θ∗0) =

υ (θ∗ − θ∗0) + op (1), where 0 < υ ≤ 1 and RT −1R′ is positive definite, then it holds
that Pr

(
Sn > CV S

n (α)
)
→ 1. 9

Since the first order derivative of ln (·) at θ∗ approaches zero, T −1
n b−2

n Dln (θ∗) is
op (1). The condition in Theorem 6.2 requires that the difference between T −1

n b−2
n Dln (θ∗0)

and T −1
n b−2

n Dln (θ∗) be proportional to that between θ∗ and θ∗0 up to a small order
term. When ln takes a quadratic form in θ, the condition is satisfied. However, as
shown in the second example below, if ln (·) takes a different form, the score test may
not be consistent for certain deviations from the null hypothesis. Therefore, even
though the test based upon Sn does not require choosing any tuning parameter, its
consistency relies on the hypothesis and model, and is difficult to check if ln (·) takes
a complicated form.

Example 2.1 (continued). Following the previous discussion, for bn =
√
n, we have:

Tn = −b−2
n D2ln (θ∗0) =

1

n

∑
XiX

′
i and

b−2
n Dln (θ∗0) =

1

n

∑
XiX

′
i (θ∗ − θ∗0) +

1

n

∑
εiXi.

9If dsn is defined as q̂R (dsn) = infλR∈ΛR
q̂R (λR) + op (1), then υ can be allowed to take any

positive value.
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Since 1
n

∑
εiXi

p→ 0, it holds that

T −1
n b−2

n Dln (θ∗0) = θ∗ − θ∗0 +

(
1

n

∑
XiX

′
i

)−1(
1

n

∑
εiXi

)
= θ∗ − θ∗0 + op (1) .

The assumption in the theorem is verified.

Example 6.1. For the Logit model, we have that

ln (θ) =
n∑
i=1

[Yi lnF (X ′iθ) + (1− Yi) ln (1− F (X ′iθ))] ,

Dln (θ) =
n∑
i=1

[YiF (−X ′iθ)− (1− Yi)F (X ′iθ)]Xi, and D2ln (θ) = −
n∑
i=1

f (X ′iθ)XiX
′
i,

where F (t) = 1
1+e−t

and f (t) = e−t

(1+e−t)2
. Assume Θ = {(θ1, θ2) ∈ R2 : θ1 + θ2 ≥ 0},

θ∗ = (1, 0) and X = (X1, X2)′ , where X1 has equal probability of being 1 and −1; X2

has equal probability of being 0 and 1; and they are independent. It can be shown
that Sn does not diverge to infinity when R =

(
1+6e+e2

8
, e
)
and r = e. The asymptotic

power of the score test is not one for testing H0 : Rθ∗ = r.

6.2 Implementation—Projection of Polytope

We describe one algorithm for the projection of a polytope developed in the constraint
logic programming, marginal problem, and robotic research based on the Fourier-
Motzkin algorithm. Other approaches such as the double description method and
equality set projection are also applicable. See Fukuda and Prodon (1995) and Jones
et al. (2004) for more details. Specifically we are interested in obtaining ΛR for the
asymptotic distribution of Sn. While the set RΘ − r is unique, there are infinite
many different halfspace descriptions. Thanks to Lemma S.1.6, the result in Lemma
6.1 does not depend on the description. Thus, any algorithm that returns a halfspace
description of RΘ− r would serve the purpose, even if the description contains many
strictly redundant inequalities. Moreover, if an inequality RR,w(j)λ ≥ rR,w(j) among
RR,wλ ≥ rR,w is strictly redundant, then rR,w(j) < 0, because 0 ∈ RΘ − r. Thus,
RR,w(j) is automatically eliminated from the submatrix RR,w,b when we consider ΛR.

We adopt the Fourier-Motzkin algorithm to obtain the halfspace description of
RΘ−r. The Fourier-Motzkin algorithm consists of two main steps. Let the combined
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polytope be

P ≡ {(θ, λ) : Reθ = re, Rwθ ≥ rw, and λ = Rθ − r} .

First, use the equality constraints Reθ = re and Rθ = λ + r to eliminate as many
coordinates in θ as possible: obtain the solution of the following system of linear
equations (

Re

R

)
θ =

(
re

λ+ r

)
as θ = Γθf + Γλ + γ by treating λ as given. The definitions of Γ, θf , and γ are the
same as the ones for (9) and Γ is some l× J matrix. This yields a reduced polytope:

Pf ≡ {(θf , λ) : Rw (Γθf + Γλ) ≥ rw −Rwγ} .

Second, apply Fourier-Motzkin Elimination (FME) (Fourier (1824), Dines (1919) and
Motzkin (1936)) on Pf . The procedure of FME is standard and can be implemented
directly with MatlabTM ’s MPT2 or MPT3. We skip the details and refer interested
readers to Dantzig and Eaves (1973), Imbert (1993), and Bastrakov and Zolotykh
(2015) for more discussion on FME. Since FME usually generates many strictly re-
dundant inequalities during the elimination, methods like Chernikov rule (Chernikov
(1965)) are introduced to reduce the number of inequalities. As discussed earlier,
such extra step is optional in our setting, because strictly redundant inequalities are
automatically eliminated when considering ΛR. We therefore obtain the halfspace
descriptions of both RΘ− r and its limit ΛR.

We provide several examples to illustrate the Fourier-Motzkin algorithm.

Example 6.2. Let Θ ≡
{
θ = (θ1, θ2)′ ∈ R2 : Rwθ ≥ rw

}
, where

Rw =

 1 0

0 1

−1 −2

 and rw =

 0

0

−6

 ,

R = (1, 1), and r = 0. We have RΘ − r =
{
λ = θ1 + θ2 : (θ1, θ2)′ ∈ Θ

}
. Since the

set RΘ− r is one dimensional, its left and right boundary can be easily obtained by
linear programming: RΘ − r = [0, 6]. The Fourier-Motzkin algorithm works as the
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following. The solution to θ1 + θ2 = λ is(
θ1

θ2

)
=

(
−1

1

)
θ2 +

(
1

0

)
λ;

and the reduced polytope Pf is expressed as

−θ2 + λ ≥ 0, θ2 ≥ 0, and − θ2 − λ ≥ −6.

By applying FME to the above inequalities, we obtain that

λ ≥ 0 and − λ+ 6 ≥ 0.

There is no strictly redundant inequality and RΘ − r = {λ : λ ≥ 0 and − λ ≥ −6}.
The limit of bn (RΘ− r) is simply ΛR = {λ : λ ≥ 0}.

Example 6.3. Let Θ ≡
{
θ = (θ1, θ2)′ ∈ R2 : Rwθ ≥ rw

}
, where

Rw =

 2 1

0 1

−1 −2

 and rw =

 0

0

−6

 ,

and RΘ−r ≡
{
λ = θ1 + θ2 : (θ1, θ2)′ ∈ Θ

}
. With the same procedure in the previous

example, we obtain RΘ − r = [0, 6] and ΛR = [0,∞). This shows that for the same
R and r, different parameter spaces can result in the same projection.

Example 3.5 (continued). The first step of Fourier-Motzkin algorithm provides θ =

Γθf + Γλ+ γ, with Γ, θf , and γ being calculated in Example 3.5 and

Γ ′ =

(
1 0 0 0

0 0 0 1

)
.

The reduced polytope is

Pf = {(θ2, θ3, λ1, λ2) : RwΓθf + RwΓλ ≥ 0−Rwγ} ,

where values of RwΓ and 0−Rwγ can be found in Example 3.5 and

(RwΓ )′ =

(
−1 0 0 0

0 0 0 1

)
.
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FME is then applied to the following linear inequalities:

−λ1 ≥ 0, θ2 ≥ 0, − θ2 + θ3 ≥ 0 and θ2 − θ3 + λ2 ≥ −0.1.

By eliminating θ2 first and then θ3, we obtain first

−λ1 ≥ 0, θ3 ≥ 0 and θ3 ≥ θ3 − λ2 − 0.1

and then
λ1 ≥ 0 and λ2 ≥ −0.1.

Thus, RΘ− r = {(λ1, λ2) : λ1 ≥ 0 and λ2 ≥ −0.1} and ΛR = {(λ1, λ2) : λ1 ≥ 0}.

7 Local Power

In this section, we investigate the asymptotic distributions of the test statistics under
sequences of local alternatives of the form

H1,n : Rθn = r + b−1
n δ (1 + o (1)) ,

where δ ∈ RJ . Following Section 2.2, let ωn ≡ (θn, ψn) be the drifting parameter se-
quence consistent withH1,n with limit ω ≡ (θω, ψω). Let cw ≡ limn→∞ bn (Rwθn − rw) ∈
Rlw
≥0, and denote c and cw,b as the subvectors of cw corresponding to the submatrices

Ru
w and Rb

w of Rw. Notice that the above definition of c is consistent with that in
(13).

Assumptions in Lemmas 4.3, 5.2, and 6.1 are modified in Assumption 7.1 below for
the drifting parameter sequence ωn consistent with H1,n. Similar type of assumptions
have been introduced in Sections 4, 5, and 6 when the parameter sequence is consistent
with H0.

Assumption 7.1. For the sequence ωn consistent with H1,n, assume the followings:
(i) supθ∈Θ:‖θ−θω‖<κn |Rn (θ)| = op (1) for all κn = o (1); (ii) (b−1

n Dln (θn) ,Tn)
d→

(Gω,Tω) for some random variables Gω ∈ Rl and Tω ∈ Rl×l, where Tn ≡ −b−2
n D2ln (θn)

and Tω is symmetric and non-singular with probability one; (iii) bn
(
θ̂ − θn

)
= Op (1);

(iv) ΣW,n
p→ ΣW,ω for which RΣW,ωR

′ is positive definite with probability one; (v)
bn

(
θ̂0 − θn

)
= Op (1); (vi) supθ∈Θ:‖θ−θω‖<κn

∣∣b−1
n RD

n (θ)
∣∣ = op (1) for all κn = o (1)

and T̂n = Tn + op (1); and (vii) ΣS,n
p→ ΣS,ω for which ΣS,ω is positive definite with
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probability one.

The following lemma provides the asymptotic distributions of Wn, QLRn, and Sn
under the drifting parameter sequence consistent with the local alternative hypothesis.

Lemma 7.1. For the parameter sequence ωn consistent with H1,n, if Assumption 7.1
holds, then

(i) Wn
d→ W1,ω ≡ (RΨ1,ω + δ)′ (RΣW,ωR

′)−1 (RΨ1,ω + δ), where

Ψ1,ω ≡ arg min
λ

[qω (λ) + φ1,ω (λ)]

in which qω (λ) = (λ− Zω)′Tω (λ− Zω), Zω = T −1
ω Gω, and

φ1,ω (λ) =

0, if Reλ = 0 and Rwλ+ cw ≥ 0

∞, otherwise
;

(ii) QLRn
d→ QLR1,ω, where

QLR1,ω ≡ min
λ

[qω (λ) + φ0,1,ω (λ)]−min
λ

[qω (λ) + φ1,ω (λ)] ,

in which

φ0,1,ω (λ) =

0, if
(
R′,R ′e,R

b′
w

)′
λ+

(
δ′,0, c′w,b

)′
= 0 and Ru

wλ+ c ≥ 0

∞, otherwise
; and

(iii) Sn
d→ S1,ω ≡ ds′1,ωΣ−1

S,ωds1,ω, where

ds1,ω ≡ arg min
λ

[qR,ω (λ) + φR,ω (λ)] ,

in which qR,ω (λ) = (λ−RZω − δ)′ (RT −1
ω R′)

−1
(λ−RZω − δ), and

φR,ω (λ) =

0, if RR,eλ = 0 and RR,w,bλ ≥ 0

∞, otherwise
.

The proof for Lemma 7.1 is similar to that for Lemmas 4.3, 5.2, and 6.1. For ωn
consistent H1,n, the asymptotic distributions of Wn and QLRn depend on both δ and
cw. The test statistic Sn does not depend on the nuisance parameter sequence Rwθn.
Thus, its asymptotic distribution relates only to δ. The local asymptotic powers of
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tests based uponWn, QLRn, and Sn with critical values CV W
n (α, τ), CV Q

n (α, τ), and
CV S

n (α) are given in the following corollary.

Corollary 7.1. Let Assumption 7.1 hold and ωn ∈ W be the parameter sequence
consistent with H1,n.

(i) If Wω is continuous at CWc,πW,ω (1− τ), then

Prωn
(
Wn > CV W

n (α, τ)
)
−→ Pr

(
W1,ω > CV W (α, τ)

)
,

where CV W (α, τ) ≡ supc∈Iα−τ C
W
c,πW,ω

(1− τ), in which

Iα−τ ≡
{

c ∈ Rlu
≥0 : c = c+ Γu

(
Ru

ΓT −1
f,ωGf,ω + ι

)
, ι ∈ ES (α− τ)

}
.

The random vector Gf,ω is the subvector of Gω corresponding to θf ;
(ii) If QLRω is continuous at CQc,πQ,ω (1− τ), then

Prωn
(
QLRn > CV Q

n (α, τ)
)
−→ Pr

(
QLR1,ω > CV Q (α, τ)

)
,

where CV Q (α, τ) ≡ supc∈Iα−τ C
Q
c,πQ,ω

(1− τ); and
(iii) If S is continuous at CSπS,ω (1− α), then

Prωn
(
Sn > CV S

n (α)
)
−→ Pr

(
S1,ω > CV S (α)

)
,

where CV S (α) ≡ CSπS,ω (1− α).

The limiting probabilities provide the local asymptotic powers. As can be seen
from the corollary, the local asymptotic powers of tests based upon Wn and QLRn

with critical values CV W
n (α, τ) and CV Q

n (α, τ) depend on δ and cw; while the test
based upon Sn and CV S

n (α) has the local asymptotic power only related to δ. This
is the consequence of both the test statistics and critical values. The asymptotic
distributions of Wn and QLRn and their corresponding critical values under ωn ∈ W
all depend on δ and cw. On the other hand, Lemma 7.1 shows that the asymptotic
distribution of Sn under ωn only depends on δ and the critical value CV S

n (α) is
determined solely by the estimator of model parameters πS.

Example 3.1 (continued). For the special case in Gourieroux et al. (1982), the
asymptotic distributions of Wn, QLRn, and Sn under H0 are the same when ΣW

and ΣS take specific forms. Moreover, since their asymptotic distributions under
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H1,n are also the same by Lemma S.1.8, tests based upon Wn, QLRn, and Sn are
asymptotically equivalent. See Silvapulle and Sen (2005) for some related discussion.

8 More Tests and Equivalence

In this section, we introduce the remaining three tests and compare them with the
previous tests. Denote θ̃ as the unconstrained estimator such that θ̃ ∈ Rl and

ln

(
θ̃
)

= sup
θ∈Rl

ln (θ) + op (1) .

We impose the following convergence rate assumption on θ̃.

Assumption 8.1. bn
(
θ̃ − θ∗

)
= Op (1).

Remark 8.1. When ln (·) is not defined outside Θ, θ̃ may not be available and tests
based on θ̃ cannot be applied. However, θ̂ and θ̂0 are defined within the parameter
space and always exist.

8.1 Another Wald Test

Based on θ̃, an alternative Wald test statistic can be defined as

W 1
n ≡ b2

n

(
Rθ̃ − r

)′
(RΣW,nR

′)
−1
(
Rθ̃ − r

)
− inf
λ∈RΘ

b2
n

(
Rθ̃ − λ

)′
(RΣW,nR

′)
−1
(
Rθ̃ − λ

)
.

The first term in the expression for W 1
n is the Wald statistic without accounting for

the constraints in Θ. The second term adjusts for the fact that θ∗ ∈ Θ by projecting
Rθ̃ onto the set RΘ. Consider e.g., the case where θ̃ lies outside Θ. Let θ̇ ∈ Θ be the
projection of Rθ̃ onto RΘ. If Rθ̇ = r, then the null hypothesis should not be rejected,
because comparing all other possible values of Rθ for θ ∈ Θ, Rθ̇ being r is the closest
to the unconstrained Rθ̃. This is the evidence supporting the null hypothesis. In the
case where RΘ is the whole space, the second term in W 1

n is zero and W 1
n becomes

the “classical” Wald test statistic.
Similar to Sn, the asymptotic distribution of the second term depends on whether

the value of Rθ∗ is in the interior of RΘ or its boundary which is known under H0.
Therefore, the asymptotic distribution of W 1

n is not discontinuous in the implicit
nuisance parameter ηk under the null.
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8.2 Two More Score Tests

Define the first alternative score test statistic as

S1
n ≡

[
T̂ −1
n b−1

n

(
Dln

(
θ̂0

)
−Dln

(
θ̂
))]′

Σ−1
S1,n

[
T̂ −1
n b−1

n

(
Dln

(
θ̂0

)
−Dln

(
θ̂
))]

,

with ΣS1,n being positive definite such that ΣS1,n
p→ ΣS1 . S1

n is the same as the global
score test defined in Silvapulle and Sen (2005). When no constraint is imposed on
the parameter space Θ, S1

n equals to the well known Rao’s score statistic, because
Dln

(
θ̂
)
is zero. Since Θ is defined by equality and inequality constraints, Dln

(
θ̂
)
is

not guaranteed to be zero. The test statistic compares values of Dln (·) evaluated at
θ̂ and θ̂0, which are close if the null is true. Notice that S1

n requires the computation
of both θ̂ and θ̂0.

It will be shown in the next section that the asymptotic behavior of S1
n is similar

to that of Wn, which is discontinuous in the implicit nuisance parameter. Uniform
inference is therefore needed and can proceed in a similar way in Section 4.2. For
brevity, we omit details here.

The second alternative score test statistic follows from Silvapulle and Silvapulle
(1995) and is defined as

S2
n ≡

(
RT̂ −1

n b−1
n Dln

(
θ̂0

))′ (
RT̂ −1

n R′
)−1 (

RT̂ −1
n b−1

n Dln

(
θ̂0

))
− inf

λ∈bn(RΘ−r)

(
RT̂ −1

n b−1
n Dln

(
θ̂0

)
− λ
)′ (

RT̂ −1
n R′

)−1 (
RT̂ −1

n b−1
n Dln

(
θ̂0

)
− λ
)
.

For more detailed discussion on S2
n, please refer to Silvapulle and Silvapulle (1995)

and Section 4.6 in Silvapulle and Sen (2005) on local score tests. The asymptotic
distribution of S2

n is the same as Sn up to the weighting matrix and is not discontinuous
in the implicit nuisance parameter ηk under the null.

8.3 Comparison of Tests

The following theorem provides the equivalence in distributions among the test statis-
tics introduced previously under the fixed model parameters.

Theorem 8.1. Let the null hypothesis and Assumptions 2.1 and 2.2 hold.
(i) Under Assumptions 2.3, 4.1, 5.1, 6.1, and 6.2, if Σ−1

S1 = R′ (RΣWR
′)−1R, then

Wn = S1
n + op (1); (ii) Under Assumptions 5.1, 6.1, and 6.2, if ΣS = RT −1R′, then
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S2
n = Sn + op (1); (iii) Under Assumptions 4.1, 5.1, 6.1 , 6.2, and 8.1, if ΣW = T −1,

then W 1
n = S2

n + op (1).

From the theorem, it can be seen that there are three types of asymptotic null
distributions, with QLRn having a unique type, Wn and S1

n sharing the same type,
andW 1

n , Sn and S2
n sharing one type. The asymptotic distribution of S1

n can be easily
obtained from Lemma 4.1 and the proof of Theorem 8.1 (i). It is the same as that
of Wn up to the weighting matrix. Due to the discontinuity of the asymptotic dis-
tribution in model parameters, uniform inference is needed to control the asymptotic
size for the test based upon S1

n. The same procedure in Section 4.2 applies. The
three test statistics Sn, W 1

n , and S2
n follow the same asymptotic distribution up to

the weighting matrix by Theorem 8.1 (ii) and (iii). Thus, algorithm in Section 6.2
is needed. Since their asymptotic distributions are not discontinuous in the implicit
nuisance parameter ηk, the standard plug-in approach for the critical value controls
the asymptotic size.

For brevity, we skip the details on how to obtain the critical values for the tests
based uponW 1

n , S1
n, and S2

n. Under the alternative hypothesis,W 1
n diverges to infinity

if the weighting matrix is positive definite. When ln (·) has no local maximum and
ΣS1 is positive definite, S1

n also diverges to infinity under H1. However, for the test
based upon S2

n to be consistent, similar conditions in Theorem 6.2 need to be imposed,
which may not hold for some model and hypothesis.

The results of Theorem 8.1 hold for any Re, Rw, and R. When the maintained
hypothesis and the null hypothesis take special forms such as the ones in Gourieroux
et al. (1982) and Wolak (1987), more equivalence results can be derived. Andrews
(2001) also compares Wn, QLRn, and Sn when the maintained hypothesis and the
null hypothesis take special forms.

9 Numerical Results

In this section, we present two sets of numerical results. First, we conduct a small
simulation study designed to examine and compare the finite sample performance of
the tests developed in this paper and the three “classical” ones. Second, using the
data from Princeton Data Improvement Initiative (PDII) survey, we apply our tests
to some linear regression models introduced in Autor and Handel (2013) to illustrate
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the applicability of our method.

9.1 Monte-Carlo Simulation

The model used in this section is designed to mimic the linear regression models in
Section 9.2.

9.1.1 The Data Generating Process

We consider a linear regression model of the following form:

Y = β1E1 + β2E2 + β3E3 + β4E4 + µ0 + µ1X1 + µ2X2 + ε,

where Θ =
{
θ = (β′, µ′)′ : Rwβ ≥ 0

}
with β ≡ (β1, . . . , β4)′, µ ≡ (µ0, µ1, µ2)′, and

Rw =


−1 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

 .

The discrete random vector (E1, E2, E3, E4) follows the distribution below:

Pr (E1 = 1, E2 = 0, E3 = 0 and E4 = 0) = 0.09,

Pr (E1 = 0, E2 = 0, E3 = 0 and E4 = 0) = 0.33,

Pr (E1 = 0, E2 = 1, E3 = 0 and E4 = 0) = 0.26,

Pr (E1 = 0, E2 = 0, E3 = 1 and E4 = 0) = 0.21,

Pr (E1 = 0, E2 = 0, E3 = 0 and E4 = 1) = 0.11.

The two continuous random variables (X1, X2) are independent of (E1, E2, E3, E4),
and follow the joint normal distribution with zero mean, unit variance, and correlation
coefficient 0.2. The error term ε is independent of the observable covariates.

We consider two DGPs corresponding to two distributions for the error ε. For
DGP A, ε follows the Gaussian distribution with variance 1/2; and for DGP B,
ε ∼ Gamma (2, 2)−1. The variance of ε is the same in both DGPs. The distribution
of ε is symmetric under DGP A and has the skewness of

√
2 under DGP B.

We aim to test the same null hypothesis as in Example 3.5 with H0 : Rβ∗ = r,
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Table I: Different sets of parameters

Case 1 Case 2 Case 3 Case 4 Case 5
(β1, 0.2, 0.25, 0.3) (β1, 0, 0.05, 0.1) (β1, 0, 0.1, 0.1) (β1, 0.01, 0.05, 0.11) (β1, 0.01, 0.02, 0.11)

where

R =

(
1 0 0 0

0 −1 0 1

)
and r =

(
0

0.1

)
.

There are four inequalities in the maintained hypothesis, among which the first
inequality is binding under the null hypothesis. To compare the power performance
of the tests under different cases, we consider five different sets of parameters corre-
sponding to different numbers of binding inequalities, see Table I.

In Case 1, no inequality is binding except the first one and there is no close-to-
binding inequality under H0. Case 2 has the second inequality binding, and Case
3 has the second and fourth inequalities binding. There is no binding inequality in
Cases 4 and 5 except the first inequality under the null hypothesis. However, the
second inequality is close-to-binding in Case 4, and the second and third inequalities
are close-to-binding in Case 5.

Under H0, β1 = 0. We consider three other values of β1: −0.05, −0.1, and −0.15

to examine the power performance of the tests.

9.1.2 The Tests and Their Implementation

The estimator objective function ln (·) takes the same form as in Example 2.1. We
implement nine tests in the following three groups:

Group I. Tests based upon Wn, QLRn, and S1
n. Because the null asymptotic dis-

tributions of all three statistics exhibit discontinuity, the critical values are computed
via Bonferroni correction. Example 3.5 in Section 3.2 provides steps for obtaining the
implicit nuisance parameter. The confidence set for c is computed in the same way for
the three tests by first constructing the confidence set for ηkn and then applying (14).
Following Romano et al. (2014) and McCloskey (2017), we set the tuning parameter
τ = α− α/10;

Group II. Tests based upon W 1
n , Sn, and S2

n. The null asymptotic distributions of
these three statistics do not exhibit discontinuity. However, to compute their critical
values, we need to compute projections of appropriate polytopes which is done via
the algorithm presented in Section 6.2. The detail can be found in the continuation
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Table II: Rejection probability under H0

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n

DGP A

Case 1 0.0412 0.0417 0.0425 0.0438 0.0498 0.0498 0.0436 0.0434 0.0431
Case 2 0.0424 0.0419 0.0429 0.0443 0.0513 0.0513 0.0442 0.0441 0.0436
Case 3 0.0443 0.0436 0.0441 0.0474 0.0509 0.0510 0.0483 0.0477 0.0467
Case 4 0.0428 0.0430 0.0423 0.0467 0.0521 0.0521 0.0479 0.0472 0.0465
Case 5 0.0430 0.0427 0.0437 0.0482 0.0502 0.0502 0.0486 0.0483 0.0480

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n

DGP B

Case 1 0.0408 0.0409 0.0421 0.0399 0.0404 0.0404 0.0396 0.0393 0.0390
Case 2 0.0411 0.0412 0.0417 0.0402 0.0406 0.0406 0.0388 0.0379 0.0372
Case 3 0.0423 0.0412 0.0425 0.0413 0.0410 0.0410 0.0376 0.0370 0.0361
Case 4 0.0398 0.0407 0.0408 0.0387 0.0405 0.0405 0.0381 0.0364 0.0352
Case 5 0.0405 0.0402 0.0406 0.0399 0.0403 0.0403 0.0392 0.0376 0.0370

of Example 3.5 in Section 6.2.
Group III. The “classical” Wald, QLR, and score test statistics based upon W 0

n ,
QLR0

n, and S0
n. They are computed in the standard way. The same critical value

from the chi-squared distribution is used for the three tests.
The weighting matrices in W 0

n , Wn, and W 1
n are set as the estimators of the

variance covariance matrix of the asymptotic distribution of θ̃, the ordinary least
square estimator of θ, except that the ones for W 0

n and W 1
n are calculated using θ̃,

and the one forWn uses θ̂. The matrices ΣS,n and ΣS1,n in Sn and S1
n are set to satisfy

the equalities in Theorem 8.1 (ii) and (i).

9.1.3 Results

The results in this section are based on the sample size n = 300 and 5000 Monte
Carlo replications. The nominal size is α = 5%.

Table II reports the finite sample size performance. Several observations emerge.
First, for DGP A, tests based upon W 0

n , W 1
n , QLR0

n, and S0
n have similar sizes, Sn

and S2
n tests have the best performance, and all have sizes closer to the nominal size

than the three tests in Group I. Second, for DGP B, tests in Group I outperform all
the other tests. Tests in Group II have similar size performance and all are slightly
under sized than tests in Group I. The “classical” tests in Group III are severely under
sized for DGP B. Third, comparing results across the two DGPs, we see that the size
performance of the tests in both Groups II and III are very sensitive to different
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Table III: Finite sample size-corrected power, DGP A

β1 = −0.05
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.1665 0.1640 0.1658 0.1799 0.1783 0.1784 0.1777 0.1774 0.1769
Case 2 0.1694 0.1657 0.1671 0.1806 0.1775 0.1777 0.1756 0.1751 0.1743
Case 3 0.1852 0.1814 0.1804 0.1791 0.1762 0.1763 0.1747 0.1741 0.1723
Case 4 0.1690 0.1648 0.1666 0.1800 0.1776 0.1777 0.1732 0.1728 0.1709
Case 5 0.1698 0.1681 0.1672 0.1815 0.1788 0.1788 0.1769 0.1747 0.1716

β1 = −0.1
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.6167 0.6155 0.6146 0.6280 0.6273 0.6272 0.6230 0.6224 0.6169
Case 2 0.6195 0.6202 0.6189 0.6312 0.6300 0.6299 0.6256 0.6243 0.6231
Case 3 0.6382 0.6361 0.6346 0.6296 0.6291 0.6291 0.6273 0.6248 0.6229
Case 4 0.6196 0.6189 0.6183 0.6249 0.6241 0.6240 0.6219 0.6218 0.6210
Case 5 0.6222 0.6216 0.6212 0.6271 0.6259 0.6260 0.6238 0.6236 0.6217

β1 = −0.15
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.9280 0.9290 0.9258 0.9408 0.9412 0.9412 0.9363 0.9360 0.9336
Case 2 0.9336 0.9342 0.9322 0.9441 0.9444 0.9444 0.9397 0.9372 0.9372
Case 3 0.9494 0.9472 0.9478 0.9422 0.9425 0.9424 0.9372 0.9354 0.9350
Case 4 0.9276 0.9275 0.9251 0.9378 0.9383 0.9383 0.9336 0.9335 0.9230
Case 5 0.9343 0.9338 0.9333 0.9424 0.9427 0.9427 0.9396 0.9380 0.9369

distributions of the error term ε. In contrast, the size performance of the uniform
tests in Group I are robust to different distributions of the error term ε which is a
desirable property.

Tables III and IV present the finite sample size-corrected powers of different tests.
First, for both DGPs and different values of β1, there is no significant difference
among tests in the same group. Second, for both DGPs, the power for all tests
increases as the value of β1 deviates more from the null value. Third, when the error
follows the Gaussian distribution, all tests perform comparably with the “classical”
tests performing slightly better except in Case 3, where three of the four inequalities
are binding (under the null hypothesis). In DGP A, when only a few inequalities are
binding or close-to-binding, the advantage of employing the prior information through
the Bonferroni-type critical value is not apparent. On the other hand, when many
inequalities are binding, employing prior information in the maintained hypothesis
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Table IV: Finite sample size-corrected power, DGP B

β1 = −0.05
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.1476 0.1532 0.1453 0.1532 0.1519 0.1518 0.1467 0.1429 0.1439
Case 2 0.1647 0.1664 0.1632 0.1514 0.1511 0.1511 0.1433 0.1420 0.1415
Case 3 0.1715 0.1742 0.1698 0.1535 0.1528 0.1526 0.1429 0.1411 0.1408
Case 4 0.1633 0.1657 0.1604 0.1502 0.1476 0.1477 0.1411 0.1402 0.1366
Case 5 0.1641 0.1672 0.1612 0.1511 0.1487 0.1487 0.1447 0.1419 0.1402

β1 = −0.1
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.5780 0.5824 0.5762 0.5834 0.5781 0.5780 0.5745 0.5732 0.5716
Case 2 0.5929 0.5956 0.5889 0.5811 0.5834 0.5834 0.5702 0.5677 0.5649
Case 3 0.5987 0.6014 0.5943 0.5877 0.5841 0.5841 0.5719 0.5702 0.5655
Case 4 0.5963 0.5976 0.5936 0.5801 0.5827 0.5826 0.5752 0.5745 0.5716
Case 5 0.5928 0.5982 0.5901 0.5813 0.5777 0.5777 0.5738 0.5695 0.5674

β1 = −0.15
Group I Group II Group III

Wn QLRn S1
n W 1

n Sn S2
n W 0

n QLR0
n S0

n

Case 1 0.8630 0.8609 0.8593 0.8705 0.8681 0.8681 0.8627 0.8592 0.8575
Case 2 0.8836 0.8772 0.8788 0.8736 0.8759 0.8759 0.8604 0.8586 0.8571
Case 3 0.8971 0.8968 0.8954 0.8807 0.8767 0.8767 0.8695 0.8629 0.8607
Case 4 0.8928 0.8923 0.8902 0.8593 0.8618 0.8618 0.8541 0.8534 0.8502
Case 5 0.8710 0.8751 0.8721 0.8586 0.8553 0.8553 0.8524 0.8471 0.8453

does increase the finite sample power. This observation is consistent for all values
of β1 in DGP A. Fourth, for DGP B, the tests in Group I have the highest power
followed by tests in Group II in all cases except Case 1, when only one inequality is
binding and there is no close-to-binding inequalities under the null hypothesis. This
is strong evidence that for skewed error distributions, it is important to take into
account prior information in the maintained hypothesis through the Bonferroni-type
critical value.

In summary, the simulation results reveal the superior performance of the tests in
Group I based on Wn, QLRn, and S1

n: their size performance is robust to the error
distribution, their power is comparable to tests in Groups II and III for DGP A and
higher for DGP B. The tests in Group II based on W 1

n , Sn, and S2
n perform better

than the “classical” tests in Group III.
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9.2 An Empirical Illustration

Using original and representative survey data, Autor and Handel (2013) conduct a
comprehensive study on the interaction among human capital, job tasks, and wages.
Their paper includes both a conceptual framework on the causal links between human
capital endowments, occupational assignment, job tasks, and wages and empirical es-
timations and tests. Focusing on regressions on wage differentials related to job tasks
and human capital, we apply our tests and compare the results with the “classical”
ones. Specifically, we consider the following three regressions in Autor and Handel
(2013) on the log hourly wages: for i = 1, ..., n,

Model 1: logWagei = β′Ei + µ′Xi + εi,

Model 2: logWagei = β′Ei + ζ ′Ti + µ′Xi + εi, and

Model 3: logWagei = β′Ei + ζ ′Ti + µ′Xi + ϑ′Zi + εi,

where β ≡ (β1, . . . , β4)′, Ei ≡ (E1,i, . . . , E4,i)
′, ζ ≡ (ζ1, ζ2, ζ3)′, and Ti ≡ (T1,i, T2,i, T3,i)

′.
For j = 1, . . . , 4, Ej,i is the dummy variable indicating the education level, with E1,i

being “Less than high school”, E2,i being “Some college”, E3,i being “College”, and E4,i

being “Postcollege”. Ti vector denotes the demand of different tasks, with T1,i being
“Abstract”, T2,i being “Routine”, and T3,i being “Manual”. Xi is a vector of demo-
graphic variables, and Zi includes 240 occupation dummy variables. The reference
group for the regressions is high school graduates. The data source is a module of
Princeton Data Improvement Initiative survey (PDII) that collects data on different
types of tasks that workers regularly perform during their work. The sample size is
n = 1333. We follow the procedure in Autor and Handel (2013) to combine items
from the PDII to elicit information on the demand of three tasks: Abstract, Routine,
and Manual. For instance, the Abstract job demand is calculated by combing four
items in PDII into a standardized scale using the first component of a principal com-
ponents analysis. The four items are: the length of longest document typically read
as part of the job, frequency of mathematics tasks involving high school or higher
mathematics, frequency of problem-solving tasks requiring at least 30 minutes to find
a good solution, and proportion of workday managing or supervising other workers.

By interpreting the coefficients on education level as the compensating differentials
for income forgone while attending school (Mincer (1974)), we expect β1 ≤ 0 ≤ β2

and a non-descending ordering of β2 to β4 under the rationality assumption. By incor-
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porating the information from the economic theory, the parameter space is expressed
as Θ =

{
(β′, µ′)′ : Rwβ ≥ 0

}
for Model 1, Θ =

{
(β′, ζ ′, µ′)′ : Rwβ ≥ 0

}
for Model 2,

and Θ =
{

(β′, ζ ′, µ′, ϑ′)′ : Rwβ ≥ 0
}
for Model 3, with

Rw =


−1 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

 .

Appendix S.2 provides primitive conditions for these linear regression models. We
first conduct tests on the point null hypothesis to investigate the significance of β1

and β2:
H0 : βj = 0 against H1 : βj 6= 0 for j = 1, 2.

Under the maintained hypothesis, it holds that β1 ≤ 0 and β2 ≥ 0. Since the reference
group is high school graduates, β1 = 0 corresponds to the penalty of having education
levels less than high school being zero, and β2 = 0 means that the monetary return
of attending some college is zero. For H0 : β1 = 0, the first inequality in Rwβ ≥ 0

binds. The remaining three inequalities are undetermined and the implicit nuisance
parameter is simply (β2, β3, β4). Similarly, for H0 : β2 = 0, the second inequality
is binding and the implicit nuisance parameter is (β1, β3, β4). We compare the tests
developed in the paper with the “classical” ones and the standard t test.

The results are summarized in Table V. We see that the “classical” tests in Group
III provide the same conclusion as the standard t test. For the same hypothesis, the
“classical” tests suggest different conclusions for different models. All four tests reject
H0 : β1 = 0 at 5% in Model 1, and fail to reject it at 10% in Model 2 and 3. The
standard OLS estimates β1 to be 0.1 in Model 1. Based on the model specification, β1

being positive indicates that on average people who do not finish high school receive
higher wages than people with high school degrees. This clearly violates the economic
theory. The “classical” tests and t test reject β1 = 0 in Model 1, which indicates that
β1 should be positive considering that the estimator of β1 is positive. On the other
hand, our tests take the economic theory into account and fail to reject H0 : β1 = 0

at 10% level in all models. When testing β2 = 0, the “classical” tests in Group III
and t tests provide different results for different models, while our tests suggest that
β2 is significant no matter which model is used. In fact, all six tests developed in the
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Table V: Significance results

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n t test

β1 = 0
Model 1 ? ? ? ? ? ? ∗∗ ∗∗ ∗∗ ∗∗
Model 2 ? ? ? ? ? ? ? ? ? ?
Model 3 ? ? ? ? ? ? ? ? ? ?

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n t test

β2 = 0
Model 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Model 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗∗ ∗∗
Model 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ? ? ? ?

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n t test

ζ2 = 0
Model 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Model 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ? ? ? ? ? ? ?

Group I Group II Group III
Wn QLRn S1

n W 1
n Sn S2

n W 0
n QLR0

n S0
n

Joint Hypo.
Model 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Model 2 ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗∗
Model 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗∗

Notes: ∗ ∗ ∗ denotes to reject at 1% level; ∗∗ denotes to reject at 5% level; ∗ denotes to reject
at 10% level; and ? denotes fail to reject at 10% level.

paper give the same testing results for the two hypotheses in three models and the
results are consistent between the models. We also test the null hypothesis of βj = 0

for j = 3, 4. The tests in all three groups give the same result, which is also the same
as the one in Autor and Handel (2013).

Under the maintained hypothesis on β, researchers can test the significance of
individual parameter ζ2:

H0 : ζ2 = 0 against H1 : ζ2 6= 0.

Because the null hypothesis is imposed on the parameter different from β, the implicit
nuisance parameter is β and ΛR = R. The results is summarized in Table V. The
“classical” tests in Group III and t test reject the null hypothesis at 1% level in Model
2, but fail to reject it at 10% level in Model 3. At the same time, the tests in Group
II provide the same results as the ones in Group III. Because the null hypothesis and
maintained hypothesis are imposed on different parameters, information in Θ is lost
due to projection. The Wald and score tests in Group II become or approximate
their “classical” counterparts. On the other hand, the tests in Group I fully exploit
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the information in the maintained hypothesis and suggest consistent results for both
Model 2 and Model 3. The tests in all three groups provide the same conclusions for
H0 : ζ1 = 0 and H0 : ζ3 = 0 and the results are consistent for both Model 2 and 3.

Researchers may also be interested in testing joint hypotheses, such as H0 : β1 = 0

and β2 + 0.1 = β4. Under this null hypothesis, having a high school degree is not
useful and the benefit of having a postcollege degree is a ten percentage increase
in wage comparing to having some college education. Finding the implicit nuisance
parameter is more involved in this case, where the detail can be found in Example
3.5 in Section 3.2. The continuation of Example 3.5 in Section 6.2 discusses how to
obtain the polytope projection for the asymptotic distributions of the test statistics
in Group II. The results of different tests are collected in the bottom part of Table V.
While all the tests suggest the same for Model 1, their conclusions differ for Model 2
and 3. Except for the test based upon QLRn in Model 2, the tests in Groups I and
II tend to not reject the null hypothesis compared with the “classical” tests, which
reject the null hypothesis at 10% level for Model 2 and 3.

10 Concluding Remarks

In this paper, we have proposed the concept of an implicit nuisance parameter for test-
ing the null hypothesis of linear equality constraints against the two-sided alternative
hypothesis when the true parameter is subject to equality and inequality constraints
in the maintained hypothesis. Moreover we have proposed an approach for identify-
ing the implicit nuisance parameter. This opens the door for uniform inference in a
wide range of models/sample information. Using our approach, we have developed
asymptotically uniformly valid Wald, QLR, and score tests in the extremum set-up
for non-trending data and studied their power and equivalence results.

In a companion paper, we are working on asymptotically uniformly valid Wald,
QLR, and score tests for trending data models in Andrews (2001) under the main-
tained hypothesis that parameters in these models are subject to equality and in-
equality constraints. Our approach for identifying implicit nuisance parameters can
also be used for testing the null hypotheses of linear inequality constraints of the form
H0: Rθ∗ ≥ r against H1: Rθ∗ < r like Wolak (1987, 1989, 1991) and of linear equality
constraints against one-sided alternatives such as H0: Rθ∗ = r against H1: Rθ∗ > r.
It is also worthwhile to investigate the possibility of extending our approach to allow
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for non-linear equality and inequality constraints.
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S.1 Technical Proofs

We introduce several notations and definitions that will be used to prove Lemma
4.2. Decompose θ into three parts: θ ≡ (θ′1, θ

′
2)′ ≡

(
θ′1,b, θ

′
1,nb, θ

′
2

)′, where θ1,b ∈ RJb ,
θ1,nb ∈ RJ−Jb and θ2 ∈ Rl−J . Under H0, we have θ∗1 = r ≡ (0′, r′nb)

′. For Θ ={
θ ∈ Rl : θ ≥ 0

}
and θn =

(
r′, θ′2,n

)′ ∈ Rl
≥0,

bn (Θ− θn) =
{
θ ∈ Rl : θ1,b ≥ 0, θ1,nb + bnrnb ≥ 0 and θ2 + bnθ2,n ≥ 0

}
.

With limn→∞ bnθ2,n = c ∈ Rl−J
≥0 , let cF ∈ RlF

≥0 be the subvector of c such that cF
contains all the finite elements of c and Υ ∈ RlF×(l−J) be the matrix such that
Υc = cF . Define

Λn ≡
{
θ ∈ Rl : θ1,b ≥ 0 and Υθ2 + Υbnθ2,n ≥ 0

}
, and

Λ ≡
{
θ ∈ Rl : θ1,b ≥ 0 and Υθ2 + Υc ≥ 0

}
.

Since the inequality a + (+∞) ≥ 0 holds for any a ∈ R, Λ can be alternatively
rewritten as

Λ =
{
θ ∈ Rl : θ1,b ≥ 0 and θ2 + c ≥ 0

}
.

For any set Γ ⊂ Rl and z ∈ Rl, define

dist (z, Γ ) ≡ inf
λ∈Γ
‖z − λ‖ , and

distn (z, Γ ) ≡ inf
λ∈Γ

(
(z − λ)′Tn (z − λ)

)1/2
.

Proof of Lemma 4.1: From Lemma 2.1, we have bn
(
θ̂ − θ∗

)
d→ Ψ. By the

definition of Wn and Assumption 4.1, the result of the lemma follows. �

Lemma S.1.1. If Zn = Op (1) and Assumption 4.3 holds, then

inf
λ∈bn(Θ−θn)

qn (λ) = inf
λ∈Λn

qn (λ) + op (1) .

Proof : By definition, bn (Θ− θn) is contained in Λn. Since qn (·) takes a quadratic
form and Λn is closed, there exists λn ∈ Λn such that

arg inf
λ∈Λn

qn (λ) = qn (λn) .
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For any give δ, we have

Pr

(∣∣∣∣ inf
λ∈bn(Θ−θn)

qn (λ)− inf
λ∈Λn

qn (λ)

∣∣∣∣ > δ

)
≤ Pr

(
inf

λ∈bn(Θ−θn)
qn (λ) 6= inf

λ∈Λn
qn (λ)

)
≤ Pr (λn ∈ Λn\bn (Θ− θn)) .

Thus, it suffices to show that Pr (λn ∈ Λn\bn (Θ− θn)) → 0. Let cI ∈ RlI
≥0 be the

subvector of c such that cI contains all the infinite elements of c and ΥI ∈ RlI×(l−J)

be the matrix such that ΥIc = cI . By definition,

Λn\bn (Θ− θn) =
{
θ ∈ Rl : θ1,b ≥ 0, Υθ2 + Υbnθ2,n ≥ 0, θ1,nb < −bnrnb and ΥIθ2 < −ΥIbnθ2,n

}
,

where each element in −bnrnb and −ΥIbnθ2,n goes to negative infinity when n→∞.
Since Zn = Op (1), for any ε > 0, there exists some M <∞ and N , such that

Pr
(
dist2

n (Zn, {0}) > M
)
< ε, for ∀n > N.

There exists NΘ, such that for n > NΘ, we have dist2
n (λ, {0}) > 2M for any λ ∈

Λn\bn (Θ− θn). Therefore, for n > max (NΘ, N),

Pr
(
dist2

n (Zn, {0}) > dist2
n (Zn,Λn\bn (Θ− θn))

)
≤ Pr

(
dist2

n (Zn, {0}) > M
)
< ε.

Since {0} ∈ bn (Θ− θn), we have

Pr (λn ∈ Λn\bn (Θ− θn)) ≤ Pr
(
dist2

n (Zn, {0}) > dist2
n (Zn,Λn\bn (Θ− θn))

)
< ε

for sufficiently large n. We conclude the lemma because ε is arbitrary. �

Lemma S.1.2. For any ωn ∈ W0, if Assumptions 4.2-4.4 hold, then

qn

(
bn

(
θ̂ − θn

))
= inf

λ∈bn(Θ−θn)
qn (λ) + op (1) .

Proof : By the definition of the drifting sequence, θn → θω as n→∞. Assumption
4.4 implies that θ̂ − θω =

(
θ̂ − θn

)
+ (θn − θω) = op (1). Together with Assumption

4.2, we obtain that

ln

(
θ̂
)

= ln (θn) +
1

2
Z ′nTnZn −

1

2
qn

(
bn

(
θ̂ − θn

))
+ op (1) . (S.17)
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Let θ̂q ∈ Θ be the approximate minimizer of qn (bn (θ − θn)), such that

qn

(
bn

(
θ̂q − θn

))
= inf

θ∈Θ
qn (bn (θ − θn)) + op (1)

= inf
λ∈bn(Θ−θn)

qn (λ) + op (1) . (S.18)

Since θn ∈ Θ, it holds that∥∥∥T 1/2
n bn

(
θ̂q − θn

)
−T 1/2

n Zn

∥∥∥ = qn

(
bn

(
θ̂q − θn

))
≤ qn (0) + op (1)

= Z ′nTnZn + op (1) = Op (1) .

By the triangle inequality and Assumption 4.3, we have∥∥∥T 1/2
n bn

(
θ̂q − θn

)∥∥∥ ≤ ∥∥∥T 1/2
n bn

(
θ̂q − θn

)
−T 1/2

n Zn

∥∥∥+
∥∥T 1/2

n Zn
∥∥ = Op (1) .

Together with T being non-singular with probability one, we obtain bn
(
θ̂q − θn

)
=

Op (1). The same argument applies and we have

ln

(
θ̂q

)
= ln (θn) +

1

2
Z ′nTnZn −

1

2
qn

(
bn

(
θ̂q − θn

))
+ op (1) . (S.19)

Combing Equation (S.17) and (S.19), and the definitions of θ̂ and θ̂p in (4) and (S.18),
it holds that

op (1) ≤ ln

(
θ̂
)
− ln

(
θ̂q

)
=

1

2
qn

(
bn

(
θ̂q − θn

))
− 1

2
qn

(
bn

(
θ̂ − θn

))
+ op (1) ≤ op (1) .

The lemma holds by applying the definition of θ̂p. �

Lemma S.1.3. For any ωn ∈ W0, if Assumption 4.3 hold, then

inf
λ∈bn(Θ−θn)

qn (λ) = inf
λ∈Λ

qn (λ) + op (1) .

Proof : By definition of the quadratic function, we have

inf
λ∈bn(Θ−θn)

qn (λ) = dist2
n (Zn, bn (Θ− θn))

and
inf
λ∈Λ

qn (λ) = dist2
n (Zn,Λ) .
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Since Zn = Op (1) by Assumption 2.2, Lemma S.1.1 provides that

dist2
n (Zn, bn (Θ− θn)) = dist2

n (Zn,Λn) + op (1) .

There exists some λn ∈ Λn such that

distn (Zn,Λn) = distn (Zn, {λn}) + op (1) .

Since Λn is a translation of Λ: Λn = Λ + (Υc−Υbnθ2,n), the Hausdorff distance be-
tween Λn and Λ, denoted as dH (Λn,Λ), satisfies the inequality dH (Λn,Λ) ≤ ‖Υbnθ2,n −Υc‖.
By the definition of c, ‖Υbnθ2,n −Υc‖ → 0 as n→∞. Therefore, we have dist (λn,Λ) =

o (1). Further with Assumption 4.3 on Tn, we have distn (λn,Λ) = op (1). Define λΛ

analogously with Λn replaced by Λ, it holds that distn (λΛ,Λn) = op (1), following the
same argument.

By the triangle inequality,

distn (Zn,Λ)− distn (Zn,Λn)

≤distn (Zn, {λn}) + distn (λn,Λ)− distn (Zn,Λn)

=distn (λn,Λ) + op (1) = op (1) .

Similarly, we have
distn (Zn,Λn)− distn (Zn,Λ) ≤ op (1) .

Therefore, distn (Zn,Λn)− distn (Zn,Λ) = op (1), and the lemma follows. �

Lemma S.1.4. Let λ̂ be the minimizer of qn (λ) over Λ:

qn

(
λ̂
)

= min
λ∈Λ

qn (λ) .

If Assumption 4.2-4.4 hold, then bn
(
θ̂ − θn

)
= λ̂+ op (1).

Proof : Let λ∗ ∈ Λ be such that
∥∥∥bn (θ̂ − θn)− λ∗∥∥∥ =

−→
d H

(
bn

(
θ̂ − θn

)
,Λ
)
.

Since Λ is a convex cone, λ∗ is unique by Perlman (1969). Moreover, the closeness of
Λ and the quadratic form of qn (·) provide that λ̂ is well defined. By the argument in
the proof of Lemma S.1.3, dH (Λn,Λ) = o (1). It holds that∥∥∥bn (θ̂ − θn)− λ∗∥∥∥ = dist

(
bn

(
θ̂ − θn

)
,Λ
)

= o (1) ,
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because bn
(
θ̂ − θn

)
∈ bn (Θ− θn) ⊆ Λn. It remains to show that

∥∥∥λ∗ − λ̂∥∥∥ = op (1).
The rest follows from the analogous argument in the proof for Theorem 2 in Andrews
(1997). All the required conditions are provided in Assumptions 4.2-4.4, Lemma S.1.2
and S.1.3. �

Proof of Lemma 4.2: Since Λ is convex and closed, we can write λ̂ defined in
Lemma S.1.4 as

λ̂ = min
λ∈Λ

qn (λ) ≡ h
(
b−1
n Dln (θn) ,Tn

)
.

By Assumption S.1.4, (b−1
n Dln (θn) ,Tn)

d→ (Gω,Tω) for any drifting parameter se-
quences ωn ∈ W0 with limit ω ∈ W0. The continuity of h (·, ·) with respect to the
two arguments implies that

λ̂ = h
(
b−1
n Dln (θn) ,Tn

) d−→ h (Gω,Tω)

= arg min
λ∈Λ

(
λ−T −1

ω Gω

)′
Tω

(
λ−T −1

ω Gω

)
.

Applying Lemma S.1.4, we obtain that

bn

(
θ̂ − θn

)
d−→ arg min

λ∈Λ

(
λ−T −1

ω Gω

)′
Tω

(
λ−T −1

ω Gω

)
= arg min

λ∈Λ
qω (λ) = arg min

λ
[qω (λ) + φω (λ)] .

If further Assumption 4.5 holds, then Wn
d→ (RΨW,ω)′ (RΣωR

′)−1 (RΨω) by the con-
tinuous mapping theorem. �

Proof of Theorem 4.1: We prove the theorem by verifying assumptions in Mc-
Closkey (2017). Notice that the distribution (RΨω)′ (RΣW,ωR

′)−1 (RΨω) is finite with
probability 1 for all c ∈ Rl−J

≥0 and πW,ω ∈ ΠW . Assumption PS in McCloskey (2017)
is trivially satisfied. By the expression in Lemma 4.2, CWc,πW,ω (1− α) is continuous
in c and πW,ω. Together with the assumption in Theorem 4.1, Assumption Cont
in McCloskey (2017) is satisfied. Let Assumption DS in McCloskey (2017) hold
for c̃ d→ c + T −1

2,ω G2,ω. For any ω ∈ W0, the confidence set ẼS (τ) satisfies that

limn→∞ Prω

(
T −1

2,ω G2,ω ∈ ẼS (τ)
)
≥ 1 − τ . This and the fact that c ∈ Rl−J

≥0 imply

that limn→∞ Prω

(
c ∈ Ĩτ

)
≥ 1−τ , which fulfills Assumption CS in McCloskey (2017).

It suffices to prove that Assumption DS in McCloskey (2017) is satisfied.
Lemma 4.2 provides that the asymptotic distribution of the test statistic Wn is

(RΨω)′ (RΣW,ωR
′)−1 (RΨω) under the full parameter sequence (ηun, πW,n, ξn). Since
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θ̃2 is an unconstrained estimator by definition, its asymptotic distribution can be
obtained by applying Lemma 4.2 with

qω (λ) =
(
λ−T −1

2,ω G2,ω

)′
T2,ω

(
λ−T −1

2,ω G2,ω

)
and

φω (λ) = 0 for λ ∈ Rl−J .

Therefore, bn
(
θ̃2 − θ2,n

)
= c̃ − bnθ2,n

d→ T −1
2,ω G2,ω and c̃

d→ c + T −1
2,ω G2,ω for any

parameter sequences ωn ∈ W0. We follow Lemma 2.1 in Andrews et al. (2011) to
establish the equivalence of results under full sequences and subsequences provided
that Assumption B2 in Andrews et al. (2011) holds. Therefore, the goal is to show
that for any subsequence there exists a full sequence that has the same limit (pos-
sibly infinity) and has its subsequence equal to the original one. Denote the sub-
sequence as

{
ηupn , πW,pn : n ≥ 1

}
such that

(√
pnη

u
pn , πW,pn

)
→ (c, πW,ω). We aim to

construct a full sequence
{
ηu?n , π

?
W,n : n ≥ 1

}
satisfying that

(√
nηu?n , π

?
W,n

)
→ (c, πW,ω)

and
(
ηu?n , π

?
W,n

)
=
(
ηupn , πW,pn

)
, ∀n ≥ 1. To clarify the notation, let the full sequence

be indexed by l:
{
ηu?l , π

?
W,l : l ≥ 1

}
. For ∀l = pn, define

(
ηu?l , π

?
W,l

)
=
(
ηupn , πW,pn

)
;

and for ∀l ∈ (pn, pn+1), define

θ?j+J,l =


√
pnθj+J,pn√

l
, if √pnθj+J,pn → cj ∈ R≥0

θj+J,pn , if √pnθj+J,pn → +∞

for j = 1, . . . , l − J and π?W,l = πW,pn . It is trivial that the constructed full sequence
satisfies the second requirement that

(
ηu?pn , π

?
W,pn

)
=
(
ηupn , πW,pn

)
for ∀n ≥ 1. To see

that the first requirement is also satisfied, please refer to page 225-226 in Cheng (2015)
for a detailed derivation. �

Proof of Theorem 4.2: It holds that

θ̂1 − r = θ̂1 − θ∗1 + θ∗1 − r

= θ̂1 − θ∗1 + θ∗1 − r,

with θ̂1 − θ∗1 = op (1) by Assumption 2.3 and θ∗1 − r 6= 0 by H1. Since RΣWR
′ is

positive definite with probability one by Assumption 4.1, (RΣWR
′)−1 is also positive

definite with probability one. Therefore, it holds that

b−2
n Wn

p−→ (θ∗1 − r)
′ (RΣWR

′)
−1

(θ∗1 − r) > 0
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and Wn diverges to infinity when n goes to infinity with probability one. It remains
to show that CV W

n (α, τ) = Op (1). For any c ≥ 0 in Lemma 4.2 and any πW,ω ∈ ΠW ,
we have ∥∥T 1/2

ω Ψω −T 1/2
ω Zω

∥∥ = qω (Ψω) ≤ qn (0)

= Z ′ωTωZω = Op (1) .

The triangular inequality implies that∥∥T 1/2
ω Ψω

∥∥ ≤ ∥∥T 1/2
ω Ψω −T 1/2

ω Zω
∥∥+

∥∥T 1/2
ω Zω

∥∥ = Op (1) .

Since Tω is symmetric and non-singular with probability one, it’s eigenvalue is not
zero. Therefore, it holds that ‖Ψω‖ = Op (1) and (RΨω)′ (RΣW,ωR

′)−1 (RΨω) =

Op (1). Assume that the sup in Definition (12) is achieved at ĉ ∈ Ĩα−τ , where Ĩα−τ
is the closure of Ĩα−τ , and CV W

n (α, τ) = CWĉ,π̂W (1− τ). Since ĉ ≥ 0 for any n, we
conclude that for τ > 0, CV W

n (α, τ) = Op (1). �

Lemma S.1.5. For Rnb
w defined in Section 3.1, there exists some ε > 0, such that

Rnb
w θ > rnbw + ε for all θ ∈ Θ0.

Proof : Assume the contrary. Then there must exist a sequence
(
Rnb
w θ
)
m
∈ Rnb

w Θ0

such that
(
Rnb
w θ
)
m
≤ rnbw + εm for εm ≡ 1

m
. By the definition of Rnb

w , it holds
that

(
Rnb
w θ
)
m
> rnbw . Therefore, the converging subsequence of

(
Rnb
w θ
)
m
, denoted as(

Rnb
w θ
)
km

, satisfies that rnbw <
(
Rnb
w θ
)
km
≤ rnbw + εkm with the limm→∞

(
Rnb
w θ
)
km

=

rnbw , because limm→∞ εm = 0. Since the set Θ0 is closed by definition, so is Rnb
w Θ0.

Therefore, there exists some Rnb
w θ

? ∈ Rnb
w Θ0 such that Rnb

w θ
? = rnbw . However, this

contradicts with the definition of Rnb
w . Therefore, the ε in the lemma always exists.

Proof of Lemma 4.3: For c defined in (13), let cF ∈ RlF
≥0 be the subvector of c

such that cF contains all the finite elements of c and Υ ∈ RlF×lu be the matrix such
that Υc = cF . Define Λn and Λ as

Λn ≡
{
θ ∈ Rl : Reθ = 0, Rb

wθ ≥ 0 and ΥRu
wθ + Υ (Ru

wθn − ruw) ≥ 0
}

and

Λ ≡
{
θ ∈ Rl : Reθ = 0, Rb

wθ ≥ 0 and ΥRu
wθ + Υc ≥ 0

}
=
{
θ ∈ Rl : Reθ = 0, Rb

wθ ≥ 0 and Ru
wθ + c ≥ 0

}
.

It suffices to show that Λn, Λ and bn (Θ− θn) satisfy all the lemmas in Section S.1.
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Decompose Rwθ ≥ bn (rw −Rwθn) based the procedure in Section 3.1; define rnbw

and rbw as the corresponding subvector of rw. We obtain that

bn (Θ− θn) =
{
θ ∈ Rl : Reθ = bn (re −Reθn) ,Rwθ ≥ bn (rw −Rwθn)

}
=
{
θ ∈ Rl : Reθ = bn (re −Reθn) ,Rnb

w θ ≥ bn
(
rnbw −Rnb

w θn
)

Rb
wθ ≥ bn

(
rbw −Rb

wθn
)
,Ru

wθ ≥ bn (ruw −Ru
wθn)

}
.

By incorporating the information in Θ0, bn (Θ− θn) can be further simplified. Since
θn ∈ Θ, we have Reθn = re; by the definition of the implicit equality, it holds that
Rb
wθn = rbw for any θn ∈ Θ0. By Lemma S.1.5, there exists some ε > 0, such that

Rnb
w θn > rnbw + ε for all θn ∈ Θ0. Thus bn

(
rnbw −Rnb

w θn
)
< −bnε, where −bnε goes to

negative infinity when n→∞. Since θn = Γθf,n + γ, we have

lim
n→∞

bn (Ru
wθn − ruw) = lim

n→∞
bn (Ru

w (Γθf,n + γ)− ruw)

= lim
n→∞

bn (Ru
wΓθf,n − (ruw −Ru

wγ))

= lim
n→∞

bn
(
Γuηkn − (ruw −Ru

wγ)
)

= c.

Thus, we’ve identified the equality constraints, binding inequality constraints, non-
binding inequality constraints and undetermined inequality constraints with the as-
sociated limits. The same derivation in Section S.1 applies to bn (Θ− θn), Λn and Λ.
The claimed result follows. �

Proof of Theorem 4.3: The proof is essentially the same as the one of Theorem
4.1. �

Proof of Theorem 4.4: The proof is similar to the one of Theorem 4.2. Since
Rθ̂ − r

p→ Rθ∗ − r 6= 0 and RΣWR
′ is positive definite with probability one by

Assumption 4.1, we have

b−2
n Wn

p−→ (Rθ∗ − r)′ (RΣWR
′)
−1

(Rθ∗ − r) > 0

and Wn diverges to infinity with probability one. Since CV W
n (α, τ) = Op (1) by the

same argument in the proof of 4.2, the theorem holds. �
Proof of Lemma 5.1: The proof follows from Theorem 2 in Andrews (1999) and

Theorem 1 and Theorem 3 in Andrews (2001). By Assumptions 2.1, 2.3 and 5.1 and
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Theorem 2 in Andrews (1999), we have

−2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

= qn

(
bn

(
θ̂0 − θ∗

))
− qn

(
bn

(
θ̂ − θ∗

))
+ op (1)

= inf
θ∈Θ0

qn (bn (θ − θ∗))− inf
θ∈Θ

qn (bn (θ − θ∗)) + op (1) .

Assumption 2.2, Theorem 1 and Theorem 3 in Andrews (2001) provide that

−2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

d−→ min
λ∈Λ0

q (λ)−min
λ∈Λ

q (λ) ,

where Λ0 and Λ correspond to the set where φ0 (λ) and φ (λ) are finite. The lemma
then follows. �

Proof of Lemma 5.2: By Assumptions 4.2, 4.4 and 5.2 and Theorem 2 in An-
drews (1999), it holds that

−2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

= qn

(
bn

(
θ̂0 − θn

))
− qn

(
bn

(
θ̂ − θn

))
+ op (1)

= inf
θ∈Θ0

qn (bn (θ − θn))− inf
θ∈Θ

qn (bn (θ − θn)) + op (1) ,

under any ωn ∈ W0. Applying the same argument in proof of Lemma 4.3 to bn (Θ− θn)

and similar argument to bn (Θ0 − θn), we obtain that

Λ =
{
θ ∈ Rl : Reθ = 0, Rb

wθ ≥ 0 and Ru
wθ + c ≥ 0

}
, and

Λ0 =
{
θ ∈ Rl :

(
R′,R ′e,R

b′
w

)′
θ = 0 and Ru

wθ + c ≥ 0
}
.

The rest of proof follows from Theorem 1 and Theorem 3 in Andrews (2001) and
Assumption 4.3. We obtain that

−2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

d−→ min
λ∈Λ0

q (λ)−min
λ∈Λ

q (λ) ,

and the lemma follows. �
Proof of Theorem 5.1: The proof is similar to the proofs of Theorems 4.1 and

4.3, with the asymptotic distribution of QLRn under ωn ∈ W0 being provided in
Lemma 4.3. �

Proof of Theorem 5.2: Assumptions 2.3 and 5.1 imply that θ̂ p→ θ∗ and θ̂0
p→ θ∗0

under H1. By Assumptions 2.1 and 2.2, we obtain that ln (·) is continuous at θ∗.
Together with the assumption on the continuity of ln (·) at θ∗0, continuous mapping
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theorem provides that

b−2
n

(
ln

(
θ̂0

)
− ln

(
θ̂
))

p−→ ς > 0.

Therefore, −2
(
ln

(
θ̂0

)
− ln

(
θ̂
))

diverges to positive infinity as n → ∞. We now
prove that CV Q

n = Op (1) to conclude the theorem. For any c ≥ 0 in Lemma 5.2 and
any πQ,ω ∈ ΠQ, we have∣∣∣min

λ
[qω (λ) + φ0,ω (λ)]−min

λ
[qω (λ) + φω (λ)]

∣∣∣ = min
λ

[qω (λ) + φ0,ω (λ)]−min
λ

[qω (λ) + φω (λ)]

≤ min
λ

[qω (λ) + φ0,ω (λ)]

≤ qω (0) = Op (1) ,

where the first inequality is due to the quadratic form of qω (λ), and the second
inequality holds because φ0,ω (0) = 0. Assume that the sup in the definition of
CV Q

n (α, τ) is achieved at ĉ ∈ Ĩα−τ . When Ĩα−τ is open, ĉ belongs to the closure of
Ĩα−τ . Since ĉ ≥ 0 for any n, we conclude that for τ > 0, CV Q

n (α, τ) = CQĉ,π̂Q (1− τ) =

Op (1). �
Proof of Lemma 6.1: Applying Equation (6), we obtain that

b−1
n Dln

(
θ̂0

)
= b−1

n Dln (θ∗) + b−1
n D2ln (θ∗)

(
θ̂0 − θ∗

)
+ b−1

n RD
n

(
θ̂0

)
.

Assumptions 2.2 and 5.1 imply that b−1
n Dln (θ∗) = Op (1) and

b−1
n D2ln (θ∗)

(
θ̂0 − θ∗

)
= b−2

n D2ln (θ∗) bn

(
θ̂0 − θ∗

)
= Op (1) .

Since bn
(
θ̂0 − θ∗

)
= Op (1) by Assumption 5.1, for any ε1 > 0, there exists some κ <

∞ such that Pr
(∥∥∥bn (θ̂0 − θ∗

)∥∥∥ ≥ κ
)
< ε1 when n is sufficiently large. By Assump-

tion 6.1 (i), for any δ > 0 and ε2 > 0, Pr
(
supθ∈Θ:‖bn(θ−θ∗)‖<κ

∣∣b−1
n RD

n (θ)
∣∣ > δ

)
< ε2
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for n sufficiently large. Thus, for any δ > 0, it holds that

Pr
(∣∣∣b−1

n RD
n

(
θ̂0

)∣∣∣ > δ
)

≤Pr
(∣∣∣b−1

n RD
n

(
θ̂0

)∣∣∣ > δ and
∥∥∥bn (θ̂0 − θ∗

)∥∥∥ < κ
)

+ Pr
(∥∥∥bn (θ̂0 − θ∗

)∥∥∥ ≥ κ
)

≤Pr

(
sup

θ∈Θ:‖bn(θ−θ∗)‖<κ

∣∣b−1
n RD

n (θ)
∣∣ > δ

)
+ Pr

(∥∥∥bn (θ̂0 − θ∗
)∥∥∥ ≥ κ

)
≤ε2 + ε1,

where ε1 and ε2 are both arbitrary. We obtain that b−1
n RD

n

(
θ̂0

)
= op (1). There-

fore, b−1
n Dln

(
θ̂0

)
= Op (1) and T̂ −1

n b−1
n Dln

(
θ̂0

)
= T −1

n b−1
n Dln

(
θ̂0

)
+ op (1) by As-

sumption 6.1 (b) and Tn
d→ T for T being non-singular with probability one by

Assumption 2.2. The definition of θ̂0 implies that Rθ̂0 = r. Therefore, it holds that

RT̂ −1
n b−1

n Dln

(
θ̂0

)
=RT −1

n b−1
n Dln

(
θ̂0

)
+ op (1)

=R
(
T −1
n b−1

n Dln (θ∗) + T −1
n b−1

n D2ln (θ∗)
(
θ̂0 − θ∗

)
+ T −1

n b−1
n RD

n

(
θ̂0

))
+ op (1)

=RT −1
n b−1

n Dln (θ∗)− bnR
(
θ̂0 − θ∗

)
+ op (1)

=RT −1
n b−1

n Dln (θ∗) + op (1) , (S.20)

where the second to last equality comes from the definition of Tn. Since(
RT̂ −1

n R′
)−1/2

RT̂ −1
n b−1

n Dln

(
θ̂0

)
= Op (1)

by Assumption 2.2 and 6.1, we obtain that ds = Op (1) by the following result:∥∥∥∥(RT̂ −1
n R′

)−1/2

ds−
(
RT̂ −1

n R′
)−1/2

RT̂ −1
n b−1

n Dln

(
θ̂0

)∥∥∥∥
=
(
ds−RT̂ −1

n b−1
n Dln

(
θ̂0

))′ (
RT̂ −1

n R′
)−1 (

ds−RT̂ −1
n b−1

n Dln

(
θ̂0

))
≤RT̂ −1

n b−1
n Dln

(
θ̂0

)′ (
RT̂ −1

n R′
)−1

RT̂ −1
n b−1

n Dln

(
θ̂0

)
+ op (1)

=Op (1) ,

61



where the inequality holds by the definition of ds. Let

qn,R (·) ≡
(
· −RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1

n R′
)−1 (· −RT −1

n b−1
n Dln (θ∗)

)
.

As ds = Op (1), Equation (S.20) and Assumption 6.1 (ii), we have

q̂R (ds) = qn,R (ds) + op (1) .

Applying the same proof as for Theorem 1 (e) in Andrews (1997), we obtain that

q̂R (ds) = inf
λ∈bn(RΘ−r)

qn,R (λ) + op (1) . (S.21)

The set RΘ − r has the halfspace description (15), which is locally approximated
by the set ΛR ≡

{
λ ∈ Rl : RR,eλ = 0,RR,w,bλ ≥ 0

}
. ΛR is convex and closed by

definition. The remaining of the proof follows from Lemma 1 in Andrews (1997)
which shows that

inf
λ∈bn(RΘ−r)

qn,R (λ) = min
λ∈ΛR

qn,R (λ) + op (1) , (S.22)

Theorem 2 in Andrews (1997) which provides ds = arg minλ∈ΛR qn,R (λ) + op (1), and
the continuous mapping theorem which gives

min
λ∈ΛR

qn,R (λ)
d−→ min

λ∈ΛR
qR (λ) ≡ min

λ∈ΛR

(
λ−RT −1G

)′ (
RT −1R′

)−1 (
λ−RT −1G

)
.

Conditions required for Lemma 1 and Theorem 2 in Andrews (1997) are given in
the assumptions. The fact that T is non-singular with probability one provides the
condition to apply the continuous mapping theorem. Hence, we obtain that

ds
d−→ arg min

λ∈ΛR
(λ−RZ)′

(
RT −1R′

)−1
(λ−RZ) ,

where Z = T −1G, which is equivalent to the result stated in the lemma.
Part (ii) follows immediately from part (i) and Assumption 6.2. �
Proof of Theorem 6.1: First, we show that the asymptotic distribution of Sn

under any ωn ∈ W0 is given by Sn
d→ Sω ≡ ds′ωΣ−1

S,ωdsω, where

dsω ≡ arg min
RR,eλ=0 and RR,w,bλ≥0

(
λ−RT −1

ω Gω

)′ (
RT −1

ω R′
)−1 (

λ−RT −1
ω Gω

)
.
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By Assumption 5.2, bn
(
θ̂0 − θn

)
= Op (1). Together with the fact that θn → θω as

n→∞, we have θ̂0− θω = θ̂0− θn + θn− θω = op (1). Assumption 6.3 (i) applies, and
b−1
n RD

n

(
θ̂0

)
= op (1) holds under any ωn ∈ W0 by the same argument in the proof of

Lemma 6.1. Then, Equation S.20 becomes

RT̂ −1
n b−1

n Dln

(
θ̂0

)
= RT −1

n b−1
n Dln (θn)− bnR

(
θ̂0 − θn

)
+ op (1)

= RT −1
n b−1

n Dln (θn)− bn (r −Rθn) + op (1)

= RT −1
n b−1

n Dln (θn) + op (1) .

The rest of the proof is the same, with all the convergence results under ωn ∈ W0

provided by Assumption 2.2.
Notice that the asymptotic distribution of Sn under ωn ∈ W0 has the exact same

form as the one given by Lemma 6.1. Therefore, CSS,π (1− α) is also the (1− α)

quantile of Sω with πS denoting the parameters in Tω, Gω and ΣS,ω. By the definition
of the asymptotic size, we have that

AsySz
(
Sn, CV

S
n (α)

)
= lim

n→∞
Prωpn

(
Spn > CV S

pn (α)
)
,

where {pn} is some subsequence of {n}. Since the following proof goes through with
pn in place n and the convergence of the full sequence guarantees the convergence of
each subsequence with same limit, we provide the following result for the full sequence
{n}. The continuity of CSπS (1− α) in π by Assumption 3.1 and π̂S

p→ πS imply that
CSπ̂S (1− α)

p→ CSπS (1− α) for any ωn ∈ W0 by the continuous mapping theorem.
The convergence in distribution result proved at the beginning and the asymptotic
distribution being continuous at CSπ (1− α) provide that

lim
n→∞

Prωn
(
Sn > CSπ̂S (1− α)

)
= α,

for any ωn ∈ W0. Therefore, the theorem follows. �
Proof of Theorem 6.2: By Assumptions 5.1 and 6.1, under H1, the same argu-

ment in the proof of Lemma 6.1 implies that

RT̂ −1
n b−2

n Dln

(
θ̂0

)
= RT −1

n b−2
n Dln (θ∗0)−R

(
θ̂0 − θ∗0

)
+ op

(
b−1
n

)
= RT −1

n b−2
n Dln (θ∗0) + op

(
b−1
n

)
= υR (θ∗ − θ∗0) + op (1) ,
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where the last equality follows from the assumption that T −1
n b−2

n Dln (θ∗0) = υ (θ∗ − θ∗0)+

op (1). Let dss ≡ bnυ (Rθ∗ − r). Since θ∗ ∈ Θ, bn (Rθ∗ − r) ∈ bn (RΘ− r); and
0 ∈ bn (RΘ− r) because there exists some θ ∈ Θ such that Rθ = r. The convexity
of bn (RΘ− r) provides that dss ∈ bn (RΘ− r). Moreover, since(

b−1
n dss −RT̂ −1

n b−2
n Dln

(
θ̂0

))′ (
RT̂ −1

n R′
)−1 (

b−1
n dss −RT̂ −1

n b−2
n Dln

(
θ̂0

))
=
(
b−1
n dss − υR (θ∗ − θ∗0) + op (1)

)′ (
RT̂ −1

n R′
)−1 (

b−1
n dss − υR (θ∗ − θ∗0) + op (1)

)
= (0 + op (1))′

(
RT̂ −1

n R′
)−1

(0 + op (1))
p−→ 0,

and RT −1R′ is positive definite, it must hold that

b−1
n dsn = b−1

n dss + op (1) = υ (Rθ∗ − r) + op (1) . (S.23)

Assume the contrary. Then it holds that

b−1
n dsn − υ (Rθ∗ − r) p−→ % 6= 0,

which implies that(
b−1
n dsn −RT̂ −1

n b−2
n Dln

(
θ̂0

))′ (
RT̂ −1

n R′
)−1 (

b−1
n dsn −RT̂ −1

n b−2
n Dln

(
θ̂0

))
=
(
b−1
n dsn − υ (Rθ∗ − r) + op (1)

)′ (
RT̂ −1

n R′
)−1 (

b−1
n dsn − υ (Rθ∗ − r) + op (1)

)
p−→%′

(
RT −1R′

)−1
% > 0,

where the inequality follows from RT −1R′ being positive definite. Thus, for n suffi-
ciently large, dsn is not the minimizer of (7), which contradicts its definition. Applying
Equation (S.23) to the definition of Sn, we have

b−2
n Sn = b−2

n ds′nΣ−1
S,ndsn

= (υ (Rθ∗ − r) + op (1))′Σ−1
S,n (υ (Rθ∗ − r) + op (1))

p−→ υ2 (Rθ∗ − r)′Σ−1
S (Rθ∗ − r) > 0,

because ΣS is positive definite. Therefore, Sn diverges and the claimed result hold by
the finiteness of CSπS (1− α). �

Proof of Lemma 7.1: (i) The asymptotic distribution of bn
(
θ̂ − θn

)
can be

obtained using the same argument for the proof of Lemma 4.3 in Section S.1, with
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bn (Θ− θn) =
{
θ ∈ Rl : Reθ = bn (re −Reθn) and Rwθ ≥ bn (rw −Rwθn)

}
,

Λ ≡
{
θ ∈ Rl : Reθ = 0 and Rwθ + cw ≥ 0

}
and cw = lim

n→∞
−bn (rw −Rwθn) .

By definition, Rθn = r+ b−1
n δ (1 + o (1)). Thus, we have bn (Rθn − r)→ δ as n→∞,

and

Wn = b2
n

(
Rθ̂ − r

)′
(RΣW,nR

′)
−1
(
Rθ̂ − r

)
= b2

n

(
Rθ̂ −Rθn +Rθn − r

)′
(RΣW,nR

′)
−1
(
Rθ̂ −Rθn +Rθn − r

)
=
[
bnR

(
θ̂ − θn

)
+ bn (Rθn − r)

]′
(RΣW,nR

′)
−1
[
bnR

(
θ̂ − θn

)
+ bn (Rθn − r)

]
d−→ (RΨ1,ω + δ)′ (RΣW,ωR

′)
−1

(RΨ1,ω + δ)′ .

(ii) The proof follows from the same argument for the proof of Lemma 5.2. Notice
that c = limn→∞−bn (ruw −Ru

wθn) by definition. We have

bn (Θ0 − θn) =
{
θ ∈ Rl :

(
R′,R ′e,R

b′
w

)′
θ = bn

((
r′, r′e, r

b′
w

)′ − (R′,R ′e,Rb′
w

)′
θn

)
,Ru

wθ ≥ bn (ruw −Ru
wθn)

}
Λ0 ≡

{
θ ∈ Rl :

(
R′,R ′e,R

b′
w

)′
λ+

(
δ′,0, c′w,b

)′
= 0 and Ru

wλ+ c ≥ 0
}
.

Applying the Λ and Λ0 defined here to the proof of Lemma 5.2, we obtain the result.
(iii) The proof mainly follows the one of Lemma 6.1 with the following modifica-

tion. First, by Assumption 7.1 (v), bn
(
θ̂0 − θn

)
= Op (1). Together with the fact

that θn → θω as n→∞, we have θ̂0−θω = θ̂0−θn+θn−θω = op (1). Assumption 7.1
(vi) applies, and b−1

n RD
n

(
θ̂0

)
= op (1) holds under any ωn ∈ W by the same argument

in the proof of Lemma 6.1. Second, Equation S.20 becomes

RT̂ −1
n b−1

n Dln

(
θ̂0

)
= RT −1

n b−1
n Dln (θn)− bnR

(
θ̂0 − θn

)
+ op (1)

= RT −1
n b−1

n Dln (θn)− bn (r −Rθn) + op (1)

= RT −1
n b−1

n Dln (θn) + δ (1 + o (1)) + op (1)

= RT −1
n b−1

n Dln (θn) + δ + op (1)

by the definition of H1,n. The rest of the proof is the same, with all the convergence
results under ωn ∈ W provided by Assumption 7.1 (ii), (vi) and (vii). �

Proof of Corollary 7.1: Part (i) of the corollary follows if we can show that
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CV W
n (α, τ)

d→ CV W (α, τ) and the convergence occurs jointly with Wn
d→ W1,ω.

Since ẼS (τ) is the set obtained using the estimators of parameters in T −1
f,ωGf,ω which

is continuous in unknown parameters, it holds that dH
(
ẼS (τ) , ES (τ)

)
= op (1). By

definition, we have

bnΓuRu
Γ θ̃f,n − (ruw −Ru

wγ)
d−→ c+ ΓuRu

ΓT −1
f,ωGf,ω, (S.24)

where the random vector Gf,ω is the subvector of Gω corresponding to θf . There-
fore, supc∈Ĩα−τ C

W
c,πW,ω

(1− τ)
d→ supc∈Iα−τ C

W
c,πW,ω

(1− τ) for any πW,ω, because Wω is
continuous at CWc,πW,ω (1− τ) for all c ∈ C. Moreover, CWc,πW,ω (1− τ) is continuous in

πW,ω and π̂W
p→ πW,ω. It holds that CV W

n (α, τ)
d→ CV W (α, τ). Since the conver-

gence of (S.24) is jointly with (b−1
n Dln (θ∗) ,Tn)

d→ (G,T ), part (i) of the corollary
follows. Similar arguments apply to part (ii). Because CSπS,ω (1− α) is continuous in
πS,ω and π̂S consistently estimates πS,ω, we have CSπ̂S (1− α)

p→ CSπS,ω (1− α). Part
(iii) therefore holds. �

Proof of Theorem 8.1: (i) Under Assumptions 2.2, 5.1 and 6.1, we’ve obtained
Equation (S.20) in the proof of Lemma 6.1. Apply the same argument to θ̂ with
Assumption 5.1 replaced by 4.4, we obtain that

T̂ −1
n b−1

n Dln

(
θ̂
)

= T −1
n b−1

n Dln (θ∗)− bn
(
θ̂ − θ∗

)
+ op (1) .

Thus,

T̂ −1
n b−1

n

(
Dln

(
θ̂0

)
−Dln

(
θ̂
))

= bn

(
θ̂ − θ̂0

)
+ op (1) .

Substituting the above equality to the expression of S1
n, we obtain

S1
n =

[
bn

(
θ̂ − θ̂0

)
+ op (1)

]′
Σ−1
S1,n

[
bn

(
θ̂ − θ̂0

)
+ op (1)

]
.

Since
bn

(
θ̂ − θ̂0

)
= bn

(
θ̂ − θ∗

)
− bn

(
θ̂0 − θ∗

)
= Op (1)

by Assumptions 2.3 and 5.1 and the null hypothesis, Assumption 6.2 implies that

S1
n = b2

n

(
θ̂ − θ̂0

)′
Σ−1
S1,n

(
θ̂ − θ̂0

)
+ op (1) .

Since Σ−1
S1 = R′ (RΣWR

′)−1R and Rθ̂0 = r, it holds that Wn = S1
n + op (1) by
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Assumptions 4.1 and 6.2.
(ii) Under Assumptions 2.2, 5.1 and 6.1, it has been shown in the proof of Lemma

6.1 that
ds = arg min

λ∈ΛR
qn,R (λ) + op (1) ,

where qn,R (·) ≡ (· −RT −1
n b−1

n Dln (θ∗))
′
(RT −1

n R′)
−1

(· −RT −1
n b−1

n Dln (θ∗)) . Let dsΛ ≡
arg minλ∈ΛR qn,R (λ). Since ΣS = RT −1R′, ΣS,n

p→ ΣS and Tn
d→ T , the convergence

of ΣS,n
d→ RT −1R′ jointly with b−1

n Dln (θ∗). Thus, we have

Sn = ds′Λ
(
RT −1R′

)−1
dsΛ + op (1) , (S.25)

for

dsΛ ≡ arg min
λ∈ΛR

(
λ−RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
λ−RT −1

n b−1
n Dln (θ∗)

)
.

Applying Equations (S.20) and (S.22) to the definition of S2
n, it holds that

S2
n =

(
RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
RT −1

n b−1
n Dln (θ∗)

)
− min

λ∈ΛR

(
λ−RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
λ−RT −1

n b−1
n Dln (θ∗)

)
+ op (1)

=
(
RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
RT −1

n b−1
n Dln (θ∗)

)
−
(
dsΛ −RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
dsΛ −RT −1

n b−1
n Dln (θ∗)

)
+ op (1) .

(S.26)

Since the set ΛR =
{
λ ∈ RJ : RR,eλ = 0,RR,w,b ≥ 0

}
is a closed convex cone with

the vertex at the origin, Pythagorean Theorem provides that(
RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
RT −1

n b−1
n Dln (θ∗)

)
− ds′Λ

(
RT −1R′

)−1
dsΛ

=
(
dsΛ −RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
dsΛ −RT −1

n b−1
n Dln (θ∗)

)
.

Apply the above equality to Equations (S.25) and (S.26), we obtain that Sn = S2
n +

op (1).
(iii) Under Assumptions 2.1, 2.2 and 8.1, we obtain

bn

(
θ̃ − θ∗

)
= arg min

λ∈Rl

(
λ−T −1

n b−1
n Dln (θ∗)

)′
Tn

(
λ−T −1

n b−1
n Dln (θ∗)

)
+ op (1)

= T −1
n b−1

n Dln (θ∗) + op (1)
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by applying Theorem 2 in Andrews (1997). By the definition of W 1
n and Assumption

4.1, it holds that

W 1
n =

(
RT −1

n b−1
n Dln (θ∗) + op (1)

)
(RΣW,nR

′)
−1 (

RT −1
n b−1

n Dln (θ∗) + op (1)
)

− inf
λ∈RΘ

(
RT −1

n b−1
n Dln (θ∗) + r − bnλ

)′
(RΣW,nR

′)
−1 (

RT −1
n b−1

n Dln (θ∗) + r − bnλ
)

=
(
RT −1

n b−1
n Dln (θ∗)

)′
(RΣW,nR

′)
−1 (

RT −1
n b−1

n Dln (θ∗)
)

− inf
λ∈bn(RΘ−r)

(
RT −1

n b−1
n Dln (θ∗)− λ

)′
(RΣW,nR

′)
−1 (

RT −1
n b−1

n Dln (θ∗)− λ
)

+ op (1) .

Applying Equation (S.20), we get that

S2
n =

(
RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
RT −1

n b−1
n Dln (θ∗)

)
− inf

λ∈bn(RΘ−r)

(
λ−RT −1

n b−1
n Dln (θ∗)

)′ (
RT −1R′

)−1 (
λ−RT −1

n b−1
n Dln (θ∗)

)
+ op (1) .

If ΣW = T −1, then ΣW,n = T −1 + op (1) by Assumptions 4.1 and 6.2. Thus, W 1
n =

S2
n + op (1). �

Lemma S.1.6. Result in Lemmas 2.1, 4.1, 4.3, 5.1, 5.2 and 7.1 is independent of
the description of Θ; result in Lemma 6.1 is independent of the description of RΘ−r.

Proof : Let Θ (1) and Θ (2) be two descriptions of Θ. By Andrews (1997), result in
2.1 is obtained by finding the cone that locally approximates bn (Θ− θ∗). Since Θ (1)

and Θ (2) are two descriptions of the same set Θ, the cone is the same. Thus, Lemma
2.1 is independent of Θ (1) and Θ (2). For Lemma 4.3, the set Λ such that φω (·) equals
zero satisfies that dH (bn (Θ− θn) ,Λ)→ 0. Let Λ1 and Λ2 be two sets obtained from
Θ (1) and Θ (2) . Since dH (bn (Θ− θn) ,Λ1) → 0 and dH (bn (Θ− θn) ,Λ2) → 0,
triangular inequality provides that dH (Λ1,Λ2) = 0, which holds if and only if the
closures of Λ1 and Λ2 are the same. Because both Λ1 and Λ2 are equivalent to their
closures, Λ1 and Λ2 are the same. Thus, Lemma 4.3 doesn’t depend on the description
of Θ. Result in other lemmas follows from the similar argument. �

Lemma S.1.7. Let

λ̂ ≡ arg min
Rwλ≥0

(
λ−T −1G

)′
T
(
λ−T −1G

)
, (S.27)

λ ≡ arg min
Rwλ=0

(
λ−T −1G

)′
T
(
λ−T −1G

)
and (S.28)

ŝ ≡ arg min
s≥0

(
s−RwT −1G

)′ (
RwT −1R ′w

)−1 (
s−RwT −1G

)
(S.29)
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Then the following two equations holds:(
Rwλ̂

)′ (
RwT −1R ′w

)−1
(
Rwλ̂

)
=
(
λ−T −1G

)′
T
(
λ−T −1G

)
−
(
λ̂−T −1G

)′
T
(
λ̂−T −1G

)
(S.30)

= ŝ′
(
RwT −1R ′w

)−1
ŝ. (S.31)

Proof : Let λ̃ = T −1G, and denote γ̂ and γ as the Lagrange multiplier vectors
associated with Rwλ ≥ 0 and Rwλ = 0 in (S.27) and (S.28) respectively. By solving
the optimization problems, we have

λ̂ = λ̃+ T −1Rwγ̂/2 and (S.32)

λ = λ̃+ T −1Rwγ/2. (S.33)

Applying Ekeland (1974), the value of the objective function evaluated at the opti-
mum in the primal optimization problem

−
(
λ̂−T −1G

)′
T
(
λ̂−T −1G

)
+
(
λ−T −1G

)′
T
(
λ−T −1G

)
= max

Rwλ≥0
−
(
λ−T −1G

)′
T
(
λ−T −1G

)
+
(
λ−T −1G

)′
T
(
λ−T −1G

)
is equal to that in the dual problem

min
γ≤0

(γ − γ)′RwT −1R ′w (γ − γ) /4 = (γ̂ − γ)′RwT −1R ′w (γ̂ − γ) /4.

Since Rwλ = 0, we have

Rwλ̂ = Rw

(
λ̂− λ

)
= RwT −1Rw (γ̂ − γ) /2

by Equations (S.32) and (S.33). Therefore, it holds that(
Rwλ̂

)′ (
RwT −1R ′w

)−1
(
Rwλ̂

)
= (γ̂ − γ)′RwT −1R ′w (γ̂ − γ) /4,

and Equation (S.30) follows.
Equation (S.31) holds if we can show that ŝ = Rwλ̂. The Karush-Kuhn-Tucker
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(KKT) conditions for λ̂ are the followings:

2T
(
λ̂−T −1G

)
−R ′wγ̂ = 0(
λ̂Rw

)′
γ̂ = 0

Rwλ̂ ≥ 0 and γ̂ ≥ 0.

Multiplying both sides of the first equality by RwT −1, we obtain

2Rw

(
λ̂−T −1G

)
−RwT −1R ′wγ̂ = 0,

and thus
γ̂ = 2

(
RwT −1R ′w

)−1
(
Rwλ̂−RwT −1G

)
.

Substituting γ̂ in the other three KKT conditions with the above equality, we get(
λ̂Rw

)′ (
RwT −1R ′w

)−1
(
Rwλ̂−RwT −1G

)
= 0

Rwλ̂ ≥ 0 and
(
RwT −1R ′w

)−1
(
Rwλ̂−RwT −1G

)
≥ 0. (S.34)

Next, we show that the KKT conditions for ŝ takes the same form. Let γ̂s be the
Lagrange multiplier vector for the optimization problem (S.29). The following KKT
conditions hold for ŝ:

2
(
RwT −1R ′w

)−1 (
ŝ−RwT −1G

)
− γ̂s = 0

ŝ′γ̂s = 0

ŝ ≥ 0 and γ̂s ≥ 0.

After eliminating γ̂s using the first equality, we obtain:

ŝ′
(
RwT −1R ′w

)−1 (
ŝ−RwT −1G

)
= 0

ŝ ≥ 0 and
(
RwT −1R ′w

)−1 (
ŝ−RwT −1G

)
≥ 0. (S.35)

The concavity and differentiability of the objective function provides that the KKT
conditions for ŝ are sufficient. Therefore, System (S.35) uniquely determines ŝ. The
equivalence of Systems (S.35) and (S.34) provides that Rwλ̂ is also uniquely deter-
mined and ŝ = Rwλ̂. Therefore, Equation (S.1.7) holds. �

Lemma S.1.8. For testing H0 : Rwθ
∗ = rw against H1 : Rwθ

∗ 6= rw under Θ =
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{
θ ∈ Rl : Rwθ ≥ rw

}
,W1,ω = QLR1,ω = S1,ω for ΣW,ω = T −1

ω and ΣS,ω = RwT −1
ω R ′w,

where definitions of each term can be found in Assumption 7.1 and Lemma 7.1.

Proof : For the null hypothesis and maintained hypothesis defined in the lemma,
we obtain that δ = cω = cw,b and c is empty. Applying the above result, along with
ΣW,ω = T −1

ω and ΣS,ω = RwT −1
ω R ′w, in the expressions of W1,ω, QLR1,ω and S1,ω,

we have that

W1,ω = (RwΨ1,ω + δ)′
(
RwT −1

ω R ′w
)−1

(RwΨ1,ω + δ) , where

Ψ1,ω = arg min
Rwλ+δ≥0

(
λ−T −1

ω Gω

)′
Tω

(
λ−T −1

ω Gω

)
;

QLR1,ω = min
Rwλ+δ=0

(
λ−T −1

ω Gω

)′
Tω

(
λ−T −1

ω Gω

)
− min

Rwλ+δ≥0

(
λ−T −1

ω Gω

)′
Tω

(
λ−T −1

ω Gω

)
; and

S1,ω = ds′1,ω
(
RwT −1

ω R ′w
)−1

ds1,ω, where

ds1,ω = arg min
λ≥0

(
λ−RwT −1

ω Gω − δ
)′ (

RwT −1
ω R ′w

)−1 (
λ−RwT −1

ω Gω − δ
)
.

The proof for Lemma S.1.7 can be directly used to obtain the equalityW1,ω = QLR1,ω.
As for the equality W1,ω = S1,ω, similar argument applies. The KKT conditions for
ds1,ω are

ds′1,ω
(
RwT −1R ′w

)−1 (
ds1,ω −RwT −1

ω Gω − δ
)

= 0

ds1,ω ≥ 0 and
(
RwT −1R ′w

)−1 (
ds1,ω −RwT −1

ω Gω − δ
)
≥ 0; (S.36)

and the ones for Ψ1,ω lead to

(RwΨ1,ω + δ)′
(
RwT −1R ′w

)−1 (
RwΨ1,ω −RwT −1

ω Gω

)
= 0

RwΨ1,ω + δ ≥ 0 and
(
RwT −1R ′w

)−1 (
RwΨ1,ω −RwT −1

ω Gω

)
≥ 0. (S.37)

System (S.36) for ds1,ω and System (S.37) for RwΨ1,ω + δ are equivalent. The same
argument in the proof for Lemma S.1.7 provides that ds1,ω = RwΨ1,ω + δ. Therefore,
W1,ω = S1,ω holds and the lemma follows. �
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S.2 Verification of Assumptions for Linear Regres-

sion Model

We present primitive conditions for Assumptions 4.2-4.4, 5.2, and 6.3 to hold in the
linear regression model in Example 2.1. Let the model be indexed by n. The sample
(Xni, Yni)

n
i=1 is row-wise i.i.d. The estimator objective function ln (θ) is calculated as:

ln (θ) = −1

2

n∑
i=1

(Yni −X ′niθ)
2

= −1

2

n∑
i=1

ε2
ni +

(
n∑
i=1

εniX
′
ni

)
(θ − θn) +

1

2
(θ − θn)′

(
−

n∑
i=1

XniX
′
ni

)
(θ − θn)

= ln (θn) +Dln (θn) (θ − θn) +
1

2
(θ − θn)′D2ln (θn) (θ − θn) ,

with ln (θn) = −1
2

∑n
i=1 ε

2
ni, Dln (θn) =

∑n
i=1 εniX

′
ni and D2ln (θn) = −

∑n
i=1 XniX

′
ni.

Assumption 2.2 is trivially satisfied by the quadratic form of ln (θ). Let Eω (·) de-
note the expectation respect to Pω. Under the condition that for any ω ∈ W0,
Eω
(
‖Xni‖4+ν) < M and Eω

(
‖εni‖4+ν) < M for some ν > 0 and M < ∞, we can

obtain the weak convergence of b−1
n Dln (θn) for any ωn ∈ W0 by the Lyapunov central

limit theorem, where bn =
√
n. Under the same condition, −bnD2ln (θn) converges in

probability to Eω (XniX
′
ni) by the weak law of large numbers for triangular arrays.

If further Eω (XniX
′
ni) is non-singular for any ω ∈ W0, then Assumption 2.2 holds.

Assumptions 2.3 and 5.2 can be verified by Theorem 1 in Andrews (1997), which
extends to probability models indexed by ωn, if Assumptions 1-4 in Andrews (1997)
hold for any ωn ∈ W0 . Assumptions 1 and 4 in Andrews (1997) are satisfied by the
quadratic form of ln (θ); and Assumptions 2 and 3 are guaranteed by the above con-
ditions on Eω

(
‖Xni‖4+ν) and Eω

(
‖εni‖4+ν) being bounded and the non-singularity

on Eω (XniX
′
ni) for any ω ∈ W0. Alternatively, one can use the epi-convergence

argument in Pflug (1994, 1995), Geyer (1994, 1996), and Knight (1999) to verify As-
sumptions 2.3 and 5.2. Such tool is powerful in dealing with estimators defined by
constrained optimizations. At last Assumption 6.3 (i) holds by RD

n (·) = 0; and 6.3
(ii) is satisfied by letting T̂n = Tn = 2/n

∑n
i=1XniX

′
ni.
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