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Abstract.   Evolutionary psychologists argue that homo sapiens’ ability to cooperate is a 

selected adaptation, unique to our species among the great apes.   Economic theory, for the 

main, attempts to explain cooperative behavior as the non-cooperative equilibrium of a 

complex game with many stages.  The innovation of behavioral economics is to include 

exotic arguments in preferences (for example, a sense of fairness ) but the analytical structure 

is still Nash (non-cooperative) equilibrium.  I argue that both these approaches are 

unsatisfying.   Instead, I propose that cooperators possess classical (non-exotic) preferences, 

but optimize in a cooperative (Kantian) way, and that doing so is not irrational.   I distinguish 

between cooperative behavior and altruism, argue that altruism is unnecessary for 

cooperation, and indeed may not induce outcomes that are different from those that occur 

with cooperation, absent altruism.   My approach provides microfoundations for cooperative 

behavior that are precisely analogous to the microfoundation that Nash equilibrium provides 

for non-cooperative behavior.    
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1.  A cooperative species 

 It is frequently said that homo sapiens is a cooperative species.   It is clearly not 

unique in this regard:  ants and bees cooperate, and perhaps other mammalian species do as 

well.  But Michael Tomasello (2014) argues, I think persuasively, that the only cooperative 

species among the five great apes (chimpanzees, bonobos, gorillas, orangutans, and humans) 

are the humans.   Tomasello believes that the tendency to cooperate with other humans is 

inborn.   He offers a number of examples of our features and behavior that are unique to 

humans among the five great apes,  indicating that the tendency to cooperate must have 

evolved very early.    Here are three: (1) among the great apes, humans are the only beings 

with sclera  (the whites of the eyes);  (2) only humans point and pantomime; (3) only humans 

have language.    The conjecture is based on the fact that it is the sclera of the eye that 

enables you to see what I am looking at.  If I am looking at an animal that would make a 

good meal, and if you and I cooperate in hunting, it is useful for me that you can see the 

animal I am looking at, because then we can catch and consume it together.  Were you and I 

only competitors it would not be useful for me that you see the object of my gaze, as we 

would then fight over who gets the animal.   Thus, one would expect the mutation of sclera to 

be selected in a cooperative species, but not selected in a competitive one.    Miming and 

pointing probably first emerged in hunting as well, and were useful for members of a species 

who cooperated in hunting.  Chimpanzees, who do not cooperate in hunting, do not mime or 

point
1
.  Miming and pointing are the predecessors of language.   Complex organs like the eye 

and the language organ must have evolved incrementally as the result of selection of many 

random mutations.  Tomasello argues that language would not be useful, and would not 

evolve in a species that did not already have cooperative behavior.   If you and I are only 

competitors, why should you believe anything I tell you?   I am only out for myself, and must 

be trying to mislead you, because cooperation is not something in our toolkit.  So language, 

were primitive forms of it to emerge in a non-cooperative species, would die out for lack of 

use. 

 Tomasello’s main work consists of experiments in which he compares human infants 

to chimpanzees, who are set with a task in which cooperation would be useful.  The general 
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outcome of these experiments is that human infants cooperate immediately, while 

chimpanzees do not.   Often, Tomasello’s cooperative project involves working together to 

acquire some food, which then must be shared.  If chimpanzees initially cooperate in 

acquiring the food, they find they cannot share it peacefully, but fight over it, and hence they 

do not cooperate the next time the project is proposed to them, for they know that the end 

would be a fight, which is not worth the value of the food acquired.   Human infants, 

however, succeed immediately and repeatedly in cooperating in both the productive and 

consumptive phase of the project. 

 There are, of course, a huge number of examples of human cooperation, involving 

projects infinitely more complex than hunting or acquiring a piece of food that is difficult to 

get.   Humans have evolved complex societies, in which people live together, cheek by jowl, 

in huge cities, and do so relatively peacefully.    We organize complex projects, including 

states and taxation, the provision of public goods, large firms, and so on, which are only 

sustained because most of those who participate do so cooperatively – that is, they participate 

not because of the fear of penalties if they fail to do so, but because they understand the value 

of contributing to the cooperative venture.  (This may seem vague at this point, but will 

become more precise below.)    We often explain these human achievements by the 

intelligence that we uniquely possess.   But intelligence does not suffice as an explanation.  

The tendency to cooperate, whether inborn or learned, is surely necessary.  If we are 

persuaded by Tomasello, then the tendency to cooperate is inborn and was necessary for the 

development of the huge and complex cooperative projects that humans undertake. 

 It is even possible that large brains that differentiate humans from the other great apes 

evolved as a result of the cooperative tendency.   Why?  Because large brains are useful for 

complex projects – initially, complex projects that would further the fitness of the members 

of the species.  From an evolutionary viewpoint, it might well not be efficient to spend the 

resources on producing a large brain, were it not necessary from complex projects.  Such 

projects will not be feasible without cooperation:  by definition, complexity, here, means that 

the project is too difficult to be carried out by an individual, and requires coordinated effort.   

If humans did not already have a tendency to cooperate, then a mutation that enlarged the 

brain would not be selected, as it would not be useful.   So not only language, but intelligence 

generally, may be the evolutionary product of a prior selection of the cooperative ‘gene.’   



 3 

 Readers may object:  cooperation, they might say, is fairly rare among humans, who 

are mainly characterized by competitive behavior.   Indeed, what seems to be the case is that 

cooperation evolves in small groups – families, tribes – but that these groups are often at war 

with one  another.   Stone-age New Guinea, which was observable up until around the middle 

of the twentieth century, was home to thousands of tribes (with thousands of languages) who 

fought each other; but within each tribe, cooperation flourished.   (One very important aspect 

of intra-tribal cooperation among young men was participating in warfare against other tribes. 

See Bowles and Gintis (2013). )    Indeed, up until the middle of the twentieth century (at 

least), human society has been characterized by increasingly complex states, in which 

cooperative behavior is pervasive internally, who do not trust, and fight wars, with each other.  

So the human tendency to cooperate is, so it appears, not unlimited
2

. 

 This paper’s purpose is to review some of the main results on the microfoundations 

of cooperation that I have published earlier in Roemer (1996, 2009, 2014).   As time goes by, 

one learns to simplify one’s analysis,  perhaps to argue for the ideas more adroitly, and this 

motivates the present paper.  In particular, here, I spend half of the exposition discussing 

simple Kantian equilibrium, which, as the name says, is simpler than the kinds of Kantian 

equilibria I discovered earlier, and are discussed later in this paper.    

 My approach to cooperation is most similar to the idea of strong reciprocity, first 

formulated in Gintis (2000), and discussed in several other publications since then (e.g., 

Gintis et al (2008)).   In addition, a serious attempt to conceptualize cooperation as 

reciprocity was published by Kolm (2005).   What I hope to have added to their story are 

microfoundations – a proposal for exactly how cooperators may be thinking -- and also to 

propose a sharper distinction between cooperation and altruism.   What their work adds to 

mine is a more thorough discussion of the evolution of cooperation, as well as a deeper 

understanding of the experimental evidence for the theory. 

  

2. Economic theory and cooperation 
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 If the secret of the success of homo sapiens is its ability to cooperate, one would think 

that economic theory would try to understand how cooperation takes place.   But the great 

achievements of economic theory have been to model competitive behavior.  These 

achievements are encapsulated in two models: the general-equilibrium model of a 

competitive economy, and the Nash equilibrium of a game.  Both models were fully formed 

by the 1950s.   The first formal statements of the models were Léon Walras’s simultaneous 

equation model of a competitive economy (1874) and Auguste Cournot’s model of duopoly 

(1838), respectively. 

 Both models are populated by agents who possess preference orders that they attempt 

to maximize.   What’s key is that each agent treats his environment as inert, or ‘parametric.’  

I call this autarchic optimization.  Assuming that his environment is inert and unchanging, 

the individual chooses that action from his feasible choices that maximizes his own 

preference order.  An equilibrium of the model consists of a set of actions by each individual, 

where each action is optimal for the individual given the actions of all others, such that the 

actions are jointly consistent, in the sense of being feasible and individually optimal 

conditional on the play of all others.    

 In the general equilibrium model, the actions of consumer-workers are labor supplies, 

consumption orders and investment supplies, and the actions of firms are labor and 

investment demands.   What is special about the model is the concept of a price vector, which 

puts a value on every commodity and every kind of labor.  Remarkably, no individual need 

ever know anything about the actions of other individuals (consumers or firms): she need 

only study the price vector, and choose her optimal actions with respect to it.  The price 

vector defines what actions are feasible for her, her preference order is defined on these 

actions, and so there is no need to see the actions of other individuals.   A price vector is said 

to be an equilibrium if, when each agent optimizes autarchically against it, the ‘sum’ of all 

actions is consistent: that is, the aggregate demand for every commodity (including kinds of 

labor and investment goods) equals its aggregate supply.    (All markets clear.)   Indeed, there 

is no social activity at all in the model: each individual jousts with the price vector, as it were, 

and, willy-nilly, all actions mesh.  (Marx might have chuckled at this formal incarnation of 

the commodity fetishism of the market economy.) 
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 A game is formally defined as a situation in which each player’s preferences are 

defined over the actions of all the players.   John Nash proposed that an equilibrium be 

defined as a set of actions, one for each player, such that, treating the actions of others as 

given, each individual’s action maximizes his own preference order (or payoff function).  If 

such a vector of actions is proposed, then each player does the best that he can for himself, 

treating the other players as inert, and the result is consistent, in the sense that the proposed 

vector of actions is feasible and stable.    Nash proved that in a large class of games, such an 

equilibrium always exists (there may, however, be many of them in a game).   John von 

Neumann, who with Oscar Morgenstern had several years earlier published A Theory of 

Games and Economic Behavior, was non-plussed by Nash’s idea.   The von Neumann-

Morgenstern concept of equilibrium was based on considering what various coalitions of 

players could achieve by cooperating with each other, and requiring an equilibrium to be a set 

of actions which, in various senses, was immune to challenge from any coalition.  Perhaps 

von Neumann disliked the non-cooperative (that is, autarchic) nature of Nash’s concept: we 

do not know the basis of his disregard for Nash equilibrium.   

 Cooperative game theory, which was initiated by von Neumann and Morgenstern in 

their book, has largely faded away in today’s economics curriculum.  I must, however, point 

out that their theory did not explain cooperation, or propose how individuals might achieve it: 

it treated cooperation as a black box.   As Mas-Colell (1987, p. 659) writes: 

 

The typical starting point [of cooperative game theory] is the hypothesis that, in principle, any 

subgroup of economic agents (or perhaps some distinguished subgroups) has a clear picture 

of the possibilities of joint action and that its members can communicate freely before the 

formal play starts.  Obviously, what is left out of cooperative theory is very substantial. 

 

In the theory it is simply assumed that each coalition of players can avail itself of certain 

payoffs, should its members cooperate among themselves, but it is not explained how they 

achieve the cooperation that produces these payoffs.   Given these data, players in the global 

economy then compete with each other, with their coalitional payoffs as backstops.   What is 

lacking in the theory, to make Mas-Colell’s point explicit, is a theory of how agents in a 

coalition achieve the cooperative payoffs.   To be precise, the non-cooperative equilibrium of 
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Nash explains how non-cooperative agents reach a stable point, but ‘cooperative’ game 

theory does not explain how members of coalitions reach a cooperative solution within their 

coalitions. 

 In other words, what we need is a micro-foundation for cooperative behavior, in the 

sense that Nash equilibrium and Walrasian equilibrium provide micro-foundations for non-

cooperative behavior.  My goal in this paper is to propose one way of micro-founding 

cooperative behavior. 

 Now modern economists do not ignore the existence of cooperation, although it must 

be said that, because the main tools of the trade explain non-cooperative behavior, it is 

unsurprising that cooperation has received fairly short shrift until recent years.   Economists, 

by and large, attempt to explain instances of cooperation using their non-cooperative tools: 

that is, they attempt to explain cooperation as the Nash non-cooperative equilibrium of a 

(quite complex) game.  I will discuss this below, where I will suggest that there is something 

Ptolemaic about the approach.    We observe that human behavior is sometimes (often?) 

cooperative.   But we have only a theory of non-cooperation.  So we will attempt to explain 

cooperation as, really, a non-cooperative outcome of a complex game.   Not only is this 

intellectually unsatisfying, but, I will argue, it is incredible that we could maintain large 

examples of cooperation where everyone is, in fact, thinking like an autarchic optimizer, 

treating his environment as inert. 

  

3.  Cooperation, solidarity, and altruism 

 Altruism is often modeled by proposing that an individual’s utility function contains 

as arguments the utilities achieved by other individuals, and that the individual’s utility 

responds positively to an increase in the utilities of others.    The classical assumption is that 

an individual is self-interested, in the sense that her preferences are defined only over goods 

that she consumes.  (These may include public goods, which can be simultaneously 

consumed by many others.)     Cooperation and altruism are very often confounded.   In fact, 

I maintain they are independent concepts, and it is wise to keep them conceptually distinct
3

. 
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 A typical example is the fine treatise by Bowles and Gintis (2011), entitled A cooperative species: Human reciprocity and its 

evolution.  The first two chapters (after the introduction) are entitled ‘The evolution of altruism in humans’ and ‘Social preferences.’  

In contrast social preferences and altruism play almost no role in the theory of cooperation I present here.    
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 For members of a group to cooperate means that they ‘work together, act in 

conjunction with one another, for an end or purpose (Oxford English Dictionary).’  There is 

no supposition that they care about each other.   Cooperation may be the only means of 

satisfying one’s own self-interested preferences.    You and I build a house together so that 

we may each live in it.  We cooperate not because of interest in the other’s welfare, but 

because cooperative production is the only way of providing any domicile.   The same thing 

is true of the early hunters I described above:  without cooperation, neither of us could 

capture that deer, which, when caught by our joint effort, will feed both of us.  In particular, I 

cooperate with you because the deer will feed me.  It is not necessary that I ascribe any value 

to the fact it will feed you, too. 

 Solidarity is defined as ‘a union of purpose, sympathies, or interests among the 

members of a group (American Heritage Dictionary).’   H.G. Wells is quoted there as saying , 

“A downtrodden class … will never be able to make an effective protest until it achieves 

solidarity.”     Solidarity, so construed, is not the cooperative action that the individuals take, 

but rather a characterization of their objective situation: namely, that they are all in the same 

boat.  I take ‘a union of interests’ to mean we are all in the same situation and have common 

preferences.    It does not mean we are altruistic towards each other.    Granted, one might 

interpret ‘a union of …sympathies..’ to mean altruism, but I choose to focus rather on ‘ a 

union of purpose or interests.’    The Wells quote clearly indicates the distinction between the 

joint action and the state of solidarity.  

 Of course, people may become increasingly sophisticated with respect to their ability 

to understand that they have a union of interests with other people.   The old left-wing 

expression “we all hang together or we all hang separately” urges everyone to see that he 

does, indeed, have similar interests to others, and hence it may be logical to act cooperatively 

(to hang together).   Notice the quoted expression does not appeal to our altruism, but to our 

self-interest, and to our solidaristic state.   

 My claim is that the ability to cooperate for reasons of self-interest is less demanding 

than the prescription to care about others.     I believe that it is easier to explain the many 

examples of human cooperation from an assumption that people learn that cooperation can 

further their own interests, than to explain those examples by altruism.     For this reason,  I 
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separate in this paper the discussion of cooperation among self-interested individuals from 

cooperation among altruistic ones; the latter topic will be addressed in section 10 below. 

 

4. Simple Kantian optimization and simple games 

 We can say that a set of individuals enjoy a union of interests when its members have 

the same preferences and face a common environment.   This does not exhaust the class of 

cases when people have a union of interests, but it is an instance of such a case.  Let us take 

the simplest example of a symmetric game, with two persons, who have the same preferences.   

This means that their payoff functions are identical up to a permutation of the individuals.   

Let the strategy space of each individual be some interval of positive real numbers I, and 

define the payoff functions V i  of the two persons as: 

  V 1(E1,E2 ) =V (E1,E2 ) =V 2 (E2,E1) ,  some function V, 

where Ei ∈I  .   The actions are to be thought of as ‘efforts;’ hence, the notation. 

The prisoners’ dilemma, though defined on a discrete strategy set of two actions, can be 

written in this form, as can all the other familiar symmetric two-person games ( chicken, 

battle of the sexes, etc.).  These games on a small set of strategies (usually two) induce games 

where the strategy space is an interval by considering mixed strategies. 

 My approach to modeling cooperation is to alter the optimizing protocol from the 

autarchic protocol.   In a symmetric game, suppose each player asks himself: what action 

would I most like all of us to take?   I call this a simple Kantian optimizing protocol, as the 

individual is applying the categorical imperative of Kant: take that action one would desire to 

have universalized.    This means each player, in the above game,  chooses E ∈I   to 

maximize V (E,E).    By definition, the two players in the symmetric game will agree upon 

the solution: call it E*  . 

 

Definition 1.   In a game {V i}   where all players have the same strategy space I, a simple 

Kantian equilibrium (SKE) is strategy E* ∈I   such that : 

  (∀E ∈I )(∀i)(V i (E*,...,E*) ≥V i (E,...,E))  . 

 

A SKE is the strategy that each would prefer that all players play, conditional upon their all 

playing the same strategy.  If the game is not symmetric, typically a SKE will not exist.   But 
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it will exist in symmetric games, since all players will be maximizing the same function 

V (E,E)4 . 

 We now observe: 

Proposition 1 In the 2 × 2 symmetric game, if the function V is concave, then the simple 

Kantian equilibrium is Pareto efficient. 

Proof:  

Suppose not, and there is a pair of actions (E1,E2 )   such that: 
  V (E1,E2 ) ≥V (E*,E*) and V (E2,E1) ≥V (E*,E*)   

with at least one strict inequality.   Adding these inequalities gives: 

  
1
2
V (E1,E2 )+ 1

2
V (E2,E1) >V (E*,E*)  . 

By concavity, V (E,E) ≥ 1
2
V (E1,E2 )+ 1

2
V (E2,E1) >V (E*,E*)  , where E = E

1 + E2

2
 .  This 

contradicts that fact that E*  maximized the function V (E,E)  , which proves the claim.   

 It is a little trickier to define a symmetric game with n ≥ 2  players.  To keep the 

argument very simple, let’s avoid that complexity and treat a special case.   I’ll consider 

symmetric n-person games where the payoff function of player i is V (Ei ,EN \i )  , where 

EN \i = E j

j≠i
∑  .  An example of such a game is one with congestion externalities: for example, 

fishers on a lake, where the fishing of others decreases the productivity of the lake.  Many 

situations where the action of each contributes in the aggregate to a public bad can be 

modeled in this way; these are often called tragedies of the commons.    We have: 

 

                                                   
4

 I owe the formulation of simple Kantian equilibrium to Brekke et al (2003) who write “To 

find the morally ideal effort the individual asks herself, ‘Which action would maximize social 

welfare, given that everyone acted like me?’”   My definition is, however, different, because 

my decision maker does not think in terms of maximizing social welfare.  Although this may 

appear to be a distinction without a difference in an economy where everyone has the same 

preferences, the difference becomes cruciallly important when we move to an environment 

with heterogeneous agents. 
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Proposition 2.   If V is concave, then the simple Kantian equilibrium of the n-person 

symmetric game is Pareto efficient. 

Proof: 

1.  Let E*  maximize V (E*,(n −1)E*)  .    (E*,...,E*)   is the simple Kantian equilibrium.  

Suppose it is Pareto dominated by a vector of actions (E1,...,En )  .   Then: 

  (∀i)(V (Ei , E j ) ≥V (E*,(n −1)E*))
j≠i
∑   

with a strict inequality for at least one i.    By adding these n inequalities we have: 

   
1
n
V (Ei , E j ) >V (E*,(n −1)E*)

j≠i
∑

i=1

n

∑  . 

By concavity of V,  
1
n
V (Ei , E j ) ≤V (E,(n −1)E)

j≠i
∑

i=1

n

∑   where E = Ei / n
i=1

n

∑  , and therefore  

   V (E,(n −1)E) >V (E*,(n −1)E*) , 

contradicting the definition of E*  .   This proves the claim.    

  

Definition Let {V i | i = 1,...,n}  be the payoff functions of an n person game, where the 

strategy space for each player is a real interval.  The game is monotone increasing (strictly 

monotone increasing) if each player’s payoff function is increasing (strictly increasing) in the 

strategies of the other players.   The game is monotone decreasing (str. monotone decreasing) 

if each player’s payoff function is decreasing (str. decreasing) in the strategies of the other 

players.   A game is monotone (strictly monotone) if it is either monotone increasing or 

decreasing (strictly monotone increasing or decreasing).   

 

Proposition 3.  Let a 2 × 2  symmetric game be strictly monotone.   Then any SKE of the 

game is Pareto efficient. 

Proof: 

 Suppose the game is strictly monotone increasing.  Let (E*,E*)  be a SKE and 

suppose it is Pareto-dominated by (E1,E2 )  , so: 
  V (E1,E2 ) ≥V (E*,E*) and V (E2,E1) ≥V (E*,E*)   

with at least one inequality strict.   Obviously E1 ≠ E2  .  For this would contradict the fact 

that (E*,E*)   is a SKE.   Suppose E1 < E2  .   Then: 
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  V (E2,E2 ) >V (E2,E1) ≥V (E*,E*)  , 

where the first inequality follows by the strict monotone increasing property of the game, 

invoked for the second player.  But this inequality contradicts the premise that (E*,E*)  is 

SKE. 

 Essentially the same argument works if the game is strictly monotone decreasing. 

 

 Clearly, in the classical prisoners’ dilemma (PD), where there are only two strategies, 

it is obvious that the simple Kantian equilibrium is that both players play ‘cooperate.’   If we 

move to mixed strategies, then the equilibrium depends on the payoff matrix, which is, in 

general form
5

: 

   

 Cooperate Defect 

Cooperate (0,0) (-c,1) 

Defect (1,-c) (-b,-b) 

 

where 0 < b < c  .    The payoff function of the row player is 

V PD (p,q) = − p(1− q)c + (1− p)q − b(1− p)(1− q)  , where p (q) is the probability that Row 

(Column) plays Cooperate.  The game is symmetric  (thus, the payoff function of the column 

player is V PD (q, p)  ).    The common strategy space of the two players is I = [0,1]  .  Recall 

that in the mixed-strategy game, Pareto efficiency is defined in terms of expected utility (i.e., 

ex ante efficiency). 

 The function V PD   is only concave on its domain I 2   in the singular case that 

c − b = 1  , in which case it is actually linear.  However, the game is strictly monotone 

increasing: just note that 

  
∂V PD (p,q)

∂q
= pc + (1− p)(1+ b) > 0  . 

                                                   
5

 Since the payoffs are von Neumann- Morgenstern utilities, we are free to pick one payoff to be 0 

and one to be 1 for each player. Thus, the PD game in mixed strategies is a two-parameter game – 

here, (b,c)  .  
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It follows immediately from Proposition 3 that the SKE of the mixed-strategy PD game is 

Pareto efficient. 

   

Proposition 4   

a. The SKE of the PD game is Pareto efficient. 

b. If 1≤ c ≤1+ b  , the SKE of the PD game is (p*, p*) = (1,1)  . 

c. If c <1  the SKE of the PD game is p*= 2b +1− c
2(1+ b − c)

 and 0 < p*<1  . 

d. If 1+ b < c  , the SKE of the PD game is p*= 1  . 

Proof: 

 Part a follows from Proposition 3 since the PD game is str. monotone increasing. 

 The function V (p, p)   is concave if and only if c − b ≤1  .   In this case the first-order 

condition 
d
dp
V PD (p, p) = 0   gives the SKE.  If 1≤ c  the solution is a corner one, at p* = 1   

(part b ).   If c <1  , the solution is interior, and given by part c.    If c − b >1  , the function 

V PD (p, p)   is convex, and hence the SKE occurs either at p = 0 or 1  .   The value is higher 

at p = 1 , giving part d.     

 

 It is interesting that in the case of part c, although the simple Kantian equilibrium is 

Pareto efficient, it entails less than full cooperation.  The intuition here is that the payoff to 

defecting against a cooperator (which is one) is high, and so it is optimal for both players not 

to cooperate fully.    This shows that cooperation, in the Kantian sense, does not always 

deliver what we might intuitively consider to be ‘ideal’ cooperative behavior.    

 I will consider next the ‘battle of the sexes,’ also a symmetric game, whose payoff 

matrix is given by  

 

 

 Dance Box 

Box (0,0) (a,1) 

Dance (1,a) (b,b) 
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where ‘she’ is the row player and ‘he’ is the column player.  Note that I have written the 

strategies in a non-traditional way (changing the order of their listing for the two players): 

this must be done to reveal the symmetric nature of the game.    Thus, we let p be the 

probability that she plays ‘Dance’ and q the probability that he plays ‘Box.’   The game has 

two parameters, (a,b)   where 0 < b < a <1  .   The payoff function for the row player is

V BS (p,q) = bpq + p(1− q)+ aq(1− p)  and the column player’s payoff is V BS (q, p)  . A 

simple Kantian equilibrium in pure strategies must be either (Dance, Box) or (Box, Dance).   

She prefers the first option, while he prefers the second: so there is no SKE in pure strategies 

in this game, which is one reason it is an interesting game.  

 The reader can check that the BS game in mixed strategies is not a monotone game.  

Nor is the game concave, for any parameter values, so neither propositions 1 or 3 are of much 

use.  We have: 

Proposition 5.    

a.The SKE of the 2 × 2   mixed-strategy BS game is (p*, p*) = 1+ a
2(1+ a − b)

 , and 0 < p* <1 .   

b. There are BS games in which the SKE is not Pareto efficient. 

c.  The Nash equilibrium of the mixed-strategy BS game is p̂ = q̂ = 1
1+ a − b

 .  It is strictly 

Pareto dominated by the SKE. 

d.  p* < p̂  . 

 

Proof: 

Compute that V BS (p, p) = (b − (1+ a))p2 + p(a +1)  , which is a strictly concave function of 

p.  Hence the FOC gives us the SKE, which is p*= 1+ a
2(1+ a − b)

.  It is easy to compute that 

p*   is interior in [0,1].   Compute that V BS (p*, p*) = (a +1)2

4(a +1− b)
.    Let  

a = 0.75, b = .01, p = 0, q = 0.6  .  Then 

 V BS (p*, p*) = 0.4400,V BS (p,q) = 0.45,V BS (q, p) = 0.6  , 

and so (p*, p*)   is Pareto-dominated by (p,q)  .    
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 The Nash equilibrium of the mixed-strategy BS game is computed from the first-

order conditions for Nash equilibrium.  The payoff to each player at the equilibrium is 
a

1+ a − b
 .   This is strictly Pareto dominated by the SKE because the inequality 

   
a

a +1− b
< (a +1)2

4(a +1− b)
  

is equivalent to 0 < (a −1)2  , which is true, because a <1.     

 In other words, simple Kantian optimization does not always deliver Pareto 

efficiency in the BS game, although the SKE always dominates the Nash equilibrium of the 

game.   From part d, we have that in the SKE, both ‘she’ and ‘he’ offer to attend their favorite 

event with lower probability than in the Nash equilibrium (NE): in other words, they 

compromise more in SKE than in NE.    

 More generally, we must have that, in any symmetric game, the SKE Pareto 

dominates the symmetric NE,  as long as the two equilibria are not the same, because the 

symmetric NE is of the form (p, p) , and SKE maximizes the payoff of the players on the 

diagonal of strategy space I 2  . 

 Nevertheless, the BS game is one that is harder to crack , from the cooperative 

viewpoint, than the PD game, because in the latter the SKE is always (ex ante) efficient. 

 Finally, we consider ‘chicken,’ also known as ‘Hawk-Dove’ game, which we take as 

the names of the strategies.   The payoff matrix is given by: 

    

 Dove Hawk 

Dove (c,c) (b,1) 

Hawk (1,b) (0,0) 

 

where 1> c > b > 0  .    The payoff function is V HD (p,q) = cpq + bp(1− q)+ q(1− p)  , where 

p (q) is the probability that the row (column) player plays Dove.  We immediately verify that 

HD  is a strictly monotone increasing game, and so the SKE is Pareto efficient.   The SKE is 

given by: 
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   p*=
1,  if c ≥ 1+ b

2
1+ b

2(1+ b − c)
,  if c < 1+ b

2
.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  

Thus, peace reigns if c is sufficiently large; otherwise, there is a positive probability that 

peace reigns although it is not assured.  There are three Nash equilibria to HD:  

(1,0),(0,1),  and ( b
1+ b − c

, b
1+ b − c

)  .  The SKE Pareto dominates the symmetric Nash 

equilibrium. 

  Besides the 2 × 2  games, three other simple games about which much has been 

written are the dictator ,ultimatum, and trust games.   I will assume classical preferences: a 

player’s von Neumann Morgenstern utility is some strictly concave increasing function of the 

monetary prize, u(x) , normalized so that u(0) = 0 and u(1) = 1 .  The second player’s vNM 

utility function is v ,  similarly normalized.  In the stochastic dictator game,  Nature chooses 

one of two players to be the dictator, who then assigns a division of a dollar between herself 

and the other player.   Thus, assuming each player is chosen to be the dictator with 

probability one-half, the expected utility of first player, if she keeps x and the second player 

decides to keep y, is 
1
2
(u(x)+ u(1− y))  .  In a simple Kantian equilibrium,  the first player 

chooses x   to maximize 
1
2
(u(x)+ u(1− x))  , the solution to which is x = 1

2
 .    Clearly, the 

second player also chooses x = 1
2

 .   Strict concavity is necessary to generate this result. 

 In the stochastic ultimatum game, a player’s strategy consists of an ordered pair 

(x, z)  , where x is what he will give to the other player, should he be chosen to be the 

decision maker, and z is the minimum that he will accept, should the other player be chosen 

the decision maker.  The game has three stages:  first, Nature chooses the ultimator; second, 

the ultimator presents an offer; third, the other player either accepts or rejects.  The unique 

subgame perfect Nash equilibrium is (x, z) = (1,0) .  

 It is not obvious how to model cooperation in the ultimatum game.  This is the first 

time we have encountered a game where the strategy is multi-dimensional.  It seems to me a 

Kantian should think as follows.   If I were to offer x, if chosen to be the ultimator, this must 

be the amount I would also like the other person to offer, if he were the ultimator, and hence I 
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must accept any amount from him that is at least 1− x  .   Therefore, z ≤1− x .  Consequently, 

the simple Kantian solution solves the program: 

  

max 1
2
u(x)+ 1

2
u(z)

subj. to
z ≤1− x

  

The unique solution, if u is strictly concave, is (x, z) = (1
2
, 1
2
) . 

 Arguably, the simple Kantian equilibria, in these two games, is closer to what is often 

observed in experiments than the Nash equilibrium.   Moreover, we have established this 

result without recourse to including a sense of fairness in the utility function.  Granted, in the 

ultimatum game, players who reject offers of less than 0.25 may say they do so because the 

offer was unfair.   My claim is that those offers are considered unfair because these are not 

the offers a person should make if he recognizes the arbitrariness of being chosen the 

ultimator.   Thus, one uses the Kantian protocol because the situation strongly suggests that 

‘we are all in the same boat’ -- Nature is just flipping a coin to choose the ultimator .  In more 

conventional language, it is a social norm to play Kantian in situations of solidarity, and 

deviators are punished by norm followers.  The same explanation applies in the dictator game, 

even though no retaliation is possible against a stingy dictator.   The arbitrariness of Nature’s 

choice induces, in players, use of the Kantian protocol.   

 Finally, I discuss the ‘trust game.’ There are two players, who draw lots to determine 

who moves first.  Each player is endowed with M units of value.   Player One chooses an 

amount, x, to give to Player Two.  Player Two, however, receives ax units of value, where 

a >1  is a constant known to both.    Then Player Two returns some amount, y, to Player One 

and the game is over.   It is played only once.  

 Conventionally, this game is modeled as a stage game, with three stages: first, Nature 

chooses the order of players; second, the first player moves; third, the second player moves.   

The unique subgame perfect Nash equilibrium is x = y = 0  if the players have self-interested 

preferences.  

 Suppose a player’s von Neumann-Morgenstern utility function for money lotteries is 

u.    Before the game begins, her expected utility is 
1
2
u(M − x + y)+ 1

2
u(M + ax − y)  . She 
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chooses a strategy (x, y)  that she would like both players to choose, which is the one that 

maximizes her expected utility: 

   

max 1
2
u(M − x + y)+ 1

2
u(M + ax − y)

s.t.
0 ≤ x ≤ M
0 ≤ y ≤ M + ax

  

If the agent is risk averse (u is strictly concave), the unique solution to this program is 

   x = M , y = (1+ a)M
2

 . 

Thus, the Kantian optimizer does not break the game up into stages.   She recognizes that, 

before the game begins, both players are ‘in the same boat,’ and calculates the strategy (x, y)   

that she would like each to play.   Total wealth is maximized when x = M   (regardless of 

what the second player does).  At the simple Kantian equilibrium, the total wealth is split 

equally between the two players:  the solution engenders ex post efficiency and equity (in an 

obvious sense).     The game need not even be symmetric – players will converge on this 

equilibrium regardless of their risk preferences, so long as they are both risk averse. 

 Cox, Ostrom et al (2009) perform the trust game with students, and report the results.  

It appears from Figure 4.1 of their paper that out of 34 games played by different players, 

three played the simple Kantian equilibrium.    (Cox, Ostrom et al (2009) do not call it that: I 

am imposing my interpretation on the results.)   In 11 out of 34 games, the first player played 

x = M  : that is, he played his part of the SKE.  In only three of these cases, however, did the 

second player respond with the value of y associated with the SKE.    However, in 9 out of 

these 11 cases, the second player returned at least M to the first player.   When the second 

player returns exactly M, she is, of course, keeping the entire surplus generated from 

cooperation, rather than sharing it with the first player, but she leaves the first player whole.   

In four out of 34 games, the Nash equilibrium was played.  In six out of 34 games, the first 

player contributed a positive amount to the second, and the second responded Nash, by 

returning zero to the first.   The authors conduct interviews with the participants after the 

conclusion of the game, and discover, unsurprisingly, that playing x = M is associated with 

having trust in others. 
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 Very little interpretive gloss on the results is provided in Cox, Ostrom et al (2009); 

however,  Walker and Ostrom (2009) do provide an interesting gloss on the results of the 

earlier paper.  The authors discuss the results of experiments with three games:  the trust 

game of Cox, Ostrom et al (2009), a public-goods game, and a common-pool-resource game.    

They write they each of these games are instances of ‘social dilemmas:’     

 

Social dilemmas characterize settings where a divergence exists between expected outcomes 

from individuals pursuing strategies based on narrow self-interests versus groups pursuing 

strategies based on the interests of the group as a whole… individuals make decisions based 

on individual gains rather than group gains or losses; and environments that do not create 

incentives for internalizing group gains or losses into individuals’ decision calculus. 

  

 From my point of view, these authors are confounding cooperation with altruism.   

As I showed above, the fully cooperative solution is attained by a Kantian optimizer who has 

no concern for others:  caring about group gains is irrelevant.   Saying that the problem in 

social dilemmas is based upon ‘a divergence between …narrow self-interest versus 

…strategies based on the interests of the group as a whole’   is, from my viewpoint, a 

gratuitous interpretation of the thought process.     Playing the strategy that one would like 

everyone to play is, for me, motivated entirely by self-interest, not by a concern for the 

welfare of the group as a whole.   It entails a recognition that cooperation can make me better 

off  (incidentally, it makes all of us better off).   But that parenthetical fact is not or need not 

be the motivation for my playing ‘cooperatively.’   The fact that these games are played only 

once by a team shows that building a reputation was not an issue. 

 My interpretation of the Cox, Ostrom (2006) results for the trust-game experiment is 

that about one-third of the players chosen to be first movers were playing (their part) of the 

simple Kantian equilibrium, because they had trust in their opponents/partners.   About 27% 

of their partners responded by playing  (their part) of the Kantian equilibrium.   Another 54% 

of the second players in these matches shared the gains induced by the first players’ transfers, 

but did not share as much as the simple Kantian equilibrium prescribes; none of the second 

players in these matches played the Nash solution in the subgame that they faced (i.e., 

returning nothing to the first player).   A smaller fraction of players appear to be using 
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autarchic optimization.     I cannot reject the hypothesis that a significant number of 

individuals are Kantian optimizers.   I see no reason to suppose that group welfare motivated 

anyone.   

  

5. Simple Kantian optimization and economic games 

 Somewhat more interesting than simple matrix games are economic games with 

production.  The pre-eminent example is the game that illustrates the tragedy of the commons.  

There is a lake upon which a community of fishers live.  In the symmetric case, each fisher 

has the same preferences over fish caught and labor expended, represented by the concave 

utility function u(x,E)  , where x is fish consumed and E is effort or labor expended.   The 

lake produces fish according to a concave production function G, where G(ES )  is total fish 

caught when total fishing labor expended is ES = Ei

i
∑  .     We assume that E is measured in 

efficiency units of labor, so that, randomness aside, the amount of fish caught by fisher i is 

given by xi = Ei

ES G(E
S )  .   This defines a game, where the payoff function of fisher i  is: 

  V i (Ei ,ES ) = u( E
i

ES G(E
S ),Ei )  .         (5.1) 

It is well-known that if G is strictly concave, the Nash equilibrium(a)  of this game is (are) 

Pareto inefficient: all fishers could improve their welfare by cutting back a bit on their fishing 

time. 

 It is obvious that this game is strictly monotone decreasing, because the average yield 
G(ES )
ES   is strictly decreasing, since G is strictly concave.   Therefore, if any j increases his 

fishing time, i’s yield falls, holding constant her own effort.   It therefore follows by 

Proposition 2 that the SKE of the game is Pareto efficient in the game.   (Proposition 2, to be 

precise, continues to hold for symmetric games whose payoff functions are of the form 

V i (Ei ,ES ) =V Pr (Ei ,ES ) = u( E
i

ES G(E
S ),Ei )   as is the case here.)  So, simple Kantian 

optimization resolves the tragedy of the commons. 

 However, this resolution is thus far incomplete, in the following sense: saying that an 

allocation of efforts is Pareto efficient in the game is not the same as saying it’s Pareto 

efficient in the economy.  The only allocations that are admitted in the game defined by V Pr   
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are the proportional allocations, where fish are divided in proportion to labor expended.  But 

there may be non-proportional allocations, feasible in the economy, that Pareto dominate the 

SKE of V Pr  .  Could this happen? 

 Pareto efficiency in the fishing economy is defined by the equations that state that 

each fisher’s marginal rate of substitution between fish and labor equals the marginal rate of 

transformation between fish and labor: that is, an interior feasible allocation {(xi ,Ei )i=1,...,n}   

is Pareto efficient in the economy if and only if: 

 

    (∀i)( ′G (ES ) = − u2 (xi ,Ei )
u1(xi ,Ei )

)       (5.2) 

where ui   is the ith   partial derivative of u and ′G   is the derivative of G.   Let us compute 

the SKE of the fishing economy by examining the first-order condition for a simple Kantian 

optimizer: 

  
d
dEi u(

1
n
G(nEi ),Ei ) = 0  , 

which expands to :. 

  
u1 ⋅

′G (nEi )n
n

⎛
⎝⎜

⎞
⎠⎟
+ u2 = 0,  or - u2

u1

= ′G (ES )
 .     (5.3) 

Therefore, indeed: 

Proposition 6  The SKE of the game V Pr   is Pareto efficient in the economy. 

  

In this sense, the SKE resolves the commons’ tragedy completely.   An allocation in this 

production economy which is proportional and Pareto efficient is called a proportional 

solution.  A more general definition of study of proportional solutions in economies with 

many goods and kinds of labor was provided by Roemer and Silvestre (1993), and was 

shown to exist under very general conditions on preferences and production.   

 Fishing societies typically use an allocation rule ‘divide the fish caught by the fishers 

in proportion to the efficiency units of labor expended,’ because this rule is equivalent 

(randomness aside) to ‘each fisher keeps his catch,’ a rule that is easy to implement.    

 Since simple Kantian optimization seems to provide such a clear resolution to the commons  
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problem of over-fishing, one wonders whether communities whose livelihood depended on 

fishing discovered it – that is, because their communities would have been better off in the 

SKE than in the NE, and one might surmise that cultural evolution would select tribes that 

taught their members to optimize in the Kantian rather than Nash way.    We will return to 

this question below. 

 Tribes which survived by hunting big game typically, in ancient times, used another 

allocation rule:  equal division.   A group of hunters fan out into the bush, and the catch is 

divided equally.   In the symmetric situation where all have the same preferences, the game is 

defined by: 

   V ED (Ei ,ES ) = u(G(E
S )

n
,Ei )  .     (5.4) 

We immediately see this a strictly monotone increasing game, and so it follows by 

Proposition 3 that the SKE is Pareto efficient in the game.   We again should check whether 

the SKE is efficient in the economy; the first order condition defining the SKE is 

  

d
dEi u(G(nEi )

n
,Ei ) = 0,  or

u1 ′G (nEi )+ u2 = 0 or - u2

u1

= ′G (ES ),
  

and so: 

Proposition 7 The SKE of the game V ED   is Pareto efficient in the economy. 

 In contrast, the Nash equilibrium of the game V ED   is always Pareto inefficient and is 

Pareto dominated by the SKE, as long as G is strictly concave.   In NE,  each hunter hunts too 

little.  It is in his autarchic interest to take a nap under a tree and let the others continue 

hunting.  If everyone does this, production suffers sufficiently to render all hunters worse off 

than at the SKE. 

 One can, of course, ask the same evolutionary question with regard to hunting 

societies: might those that flourished have done so by discovering the Kantian optimization 

protocol? 

 There are many other examples of symmetric games derived from economies in 

which the SKE is Pareto efficient in the economy.  Consider the generic public-good game, 

in which each person has the common utility function u(Ei ,Y ) = v(Y )− h(Ei )   and 

Y = G(ES )  , where G and v are concave and h is convex.   The FOC for a SKE is: 
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d
dE
(v(G(nE))− h(E)) = 0 = ′v (G(nE)) ′G (nE)n − ′h (E)  , 

or          
1
n

′h (E) = ′v (G(nE)) ′G (nE)  . (5.5) 

An allocation in the public-good economy is Pareto efficient if: 

  (∃ai ≥ 0)( ai = 1)(ai∑ ′h (Ei ) = ′v (G(ES )) ′G (ES )  .   (5.6) 

Hence the SKE is Pareto efficient: simply let ai = 1/ n   for every i.   In like manner, the SKE 

in a symmetric public-bad economy is Pareto efficient.   The Nash equilibria in public-good 

and public-bad economies are not Pareto efficient – the so-called free-rider problem is just 

another name for the tragedy of the commons.   

 

6.  Elinor Ostrom and the tragedy of the commons 

 E. Ostrom is justly famous for studying hundreds of communities that face commons 

problems, and articulating a view about how many of them – the successful ones – solve their 

commons’ tragedies (for instance, Ostrom (1990)).  Her general position is that success is 

achieved through regulation combined with punishments levied against those who break the 

rules – e.g., they fish more than their entitled time.    It is true that, in all of these 

communities, one observes the existence of punishments and there are deviators who disobey 

the rules.    (Often these deviators are new members to the community.)    My conjecture is 

that Ostrom’s explanation – that the good equilibrium is established through the existence of 

a structure of punishment – is only part of the story, and perhaps a very small part.   Perhaps 

the main explanation of successful resolution of commons’ tragedies is that most participants 

are applying the simple Kantian protocol: they are consciously acting in they way they 

believe all others should act. 

 Let us think about how to model Ostrom’s proposal as the Nash equilibrium of a 

game. It is a game with stages.  Consider a fishing community where all have the same self-

interested preferences  (we are still in the symmetric case).     In the first stage, individuals 

choose how long to fish: it has previously been announced what the SKE is; everyone 

understands, let us suppose, what the Kantian-cooperative action is, which will achieve a 

Pareto efficient solution.   However, some people cheat in the first stage.  In the second stage, 

some fishers among those who cooperated – chosen by some rule – are assigned to punish 
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those who cheated in stage one.
6

   In stage two, if any of the chosen punishers fail to carry 

out the punishment, they are punished in stage three by other punishers.  This description fits 

well with the definition of a social norm: a norm is a prescription concerning how to behave, 

such that those who fail to behave are punished by others. (See Elster (2009).) 

 The problem, however, is that punishing others is costly: it reduces the utility of the 

punisher, because he incurs some danger or cost in carrying out the punishment.    One can 

easily see that the stage game just constructed will not support cooperative behavior as a 

Nash equilibrium unless it has an infinite number of stages.   For suppose the game had only 

two stages: in stage two, the appointed punishers would not carry out the punishments, since 

doing so would reduce their utility, and there is no stage three in which someone would 

punish them for shirking.   The same argument holds for any finite number of stages.  In the 

last stage, the appointed punishers would not carry out their punishment of those who failed 

to punish in the previous stage.   The ‘good’ equilibrium unravels: the only Nash equilibrium 

of the game is that everybody cheats and nobody punishes.   

 One might respond:  well, fishers are not completely self-interested, they have a sense 

of fairness, an argument in their utility function that causes them to punish others.   Let us 

leave this objection aside for the moment: the demonstration above shows that fishers with 

classical self-interested preferences cannot, in Nash equilibrium, be induced to play the good 

solution unless the game has an infinite number of stages. 

 I contend that such an explanation is Ptolemaic: the infinite-stage game is like an 

epicycle that must be invoked to explain planetary motion.   I find it more parsimonious to 

propose that most fishers are saying to themselves, ‘I’ll fish the amount of time that I’d like 

all others to fish.’  Or, perhaps in a more regulated environment, ‘I’ll fish the assigned time 

because I understand that if we all fish our assigned time, the result will be better for me than 

if we were all to optimize autarchically.’  The counterfactual the individual constructs in the 

thought experiment is not the autarchic one  (that only he deviates from the cooperative 

action) but rather that all deviate.   The constraint is we all choose the same action. 

                                                   
6

 In lobster fishing communities in Maine, the first time a lobsterman put out too many nets, other fishers left messages 

on his buoys.   If he cheated again, a committee visited him to warn him.  If a cheated a third time, his nets were 

destroyed. 
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Nevertheless, the argument is a self-interested one: the individual is not calculating the 

welfare of others – or at least he need not.  Cooperation does not presume altruism.  It does, 

perhaps, assume that fishers possess a sense of fairness, which is embodied in the Kantian 

optimization protocol.   

 In reality, there are usually some fishers who cheat, and they are indeed punished – 

even though the real ‘game’ does not have an infinite number of stages.    My explanation for 

why punishers carry out punishments is that they are optimizing in the Kantian way:  they 

punish the cheaters because they would like all others assigned to punish to do their jobs as 

well.    So the enforcement of social norms – since in reality these games do not have an 

infinite number of stages – is itself due , I contend, to Kantian optimization. 

 Let us now consider a second category of explanation for why punishers punish 

cheaters.  It is, many would say, because their preferences are defined over more complex 

arguments than their own consumption and labor: fairness is an argument of their preferences.  

A cheater offends one’s sense of fairness, and the welfare loss I thereby experience by your 

cheating can be at least partially attenuated by my punishing you.  A more positive version of 

this argument occurs in other contexts: that people derive a ‘warm glow’ from taking the 

cooperative action, or being altruistic.   (See Andreoni (1990).) 

 I do not deny that a sense of fairness is real, and that warm glows exist.  What I say is 

that conceptualizing a sense of fairness or a warm glow as an argument of preferences is  

unparsimonious.   Why is my sense of fairness offended by a cheater?  I think it is because 

the cheater is not doing what we all should do.  He is thereby taking advantage of me.   So 

the offense to my sense of fairness is only descriptive, it is not fundamental: what’s 

fundamental is that the cheater is deviating from the Kantian protocol.  Likewise, why do I 

get a warm glow from taking the cooperative action?  The warm glow is not the explanation, 

the cause of my behavior, it is an unintended side effect that follows from my doing the fair 

thing – that is, optimizing according to the Kantian protocol
7

. 

 What I am proposing is that optimizing behavior in games involves specifying two 

‘parameters’:  one’s preferences and one’s optimizing protocol.    Classically, in economic 

                                                   
7

 When I help my child with a task, and he succeeds, I enjoy a warm glow.  But getting the glow was not the motivation for my 

helping him:  I wanted him to accomplish a task.  The warm glow is what Elster (1983) calls a ‘state that is essentially a by-product.’ 
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theory,  the second parameter is not recognized as one, because it’s assumed that a unique 

optimizing protocol characterizes rationality – namely, the autarchic protocol that defines 

Nash (and Walrasian) equilibrium.    The difference between classical and behavioral 

economists is that the latter expand the domain of preferences to include senses of fairness, 

desires for equality, altruism, and so on.  But both classical and behavioral economists 

maintain the Nash optimizing protocol.   In contrast, I propose not to expand the domain of 

preferences – let’s be parsimonious and keep preferences classical, at least for now – but alter 

the optimizing protocol from Nash’s to Kant’s. 

  Rationality, in a decision problem, seems quite well-defined.   But in a game, when 

everyone’s welfare depends on everyone’s actions,  it is not so clear what rationality entails.     

We, schooled in Nash equilibrium, have come to accept the conclusion that ‘rational behavior 

often entails collectively sub-optimal results.’  I am uncomfortable with that statement.  If 

cooperation could render everyone better off than in the Nash equilibrium, would it not be 

rational to cooperate?   The response, of course, is that someone (myself?) could be even 

better off if all others cooperate and I cheat.  So a self-interested, rational agent should cheat 

in this situation, as long as this is the last stage in the game, etc.   But if evolution has 

endowed us with an ability to optimize in the Kantian manner (and I am implying this is what 

the work of Tomasello and others is indicating), is it sensible or useful to call that behavior 

irrational? 

 I do not deny that pure Kantian optimizers – those who universally apply the Kantian 

optimization protocol, independent of the behavior of others – are fairly rare.  I believe many 

people are conditional Kantian optimizers:  they apply the Kantian protocol in situations 

where they trust that many others will do so as well.   (This will be formalized below.)   Thus, 

there are two necessary conditions for the existence of Kantian behavior: solidarity, in the 

sense defined in section 1, and trust, which is a belief that others, too, will optimize in the 

Kantian way.  We see many situations in which solidarity (in the sense of unity of interests 

exists) but trust is lacking, and Kantian optimization does not occur.    We also see many 

situations where both solidarity and trust exist and it does occur.  

  Consider recycling trash.   Recycling entails a small personal cost.  The marginal 

benefit that I produce by recycling, in terms of a clean environment, is trivial.   There is, 

usually, no punishment for failing to recycle.   Yet many  -- in some countries, most -- people 
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recycle.   This is not a Nash equilibrium but it is a simple Kantian equilibrium.  I invoke 

again the caveat against explaining such behavior by the warm glow recyclers achieve.   

Solidarity is obvious in this example – many of us have essentially the same preferences over 

the public good achieved by recycling and the disutility of our own effort -- and trust has 

been built by observing that, indeed, many others are recycling.    

 In World War II Britain, a simple Kantian equilibrium was to ‘do one’s bit,’ some 

extra voluntary contribution to the war effort
8

.   Both solidarity and trust existed in this 

instance.   Evidently the sense of solidarity was palpable, as it doubtless is in many such 

situations.  The sense of solidarity is very close to trust: for it means that we all understand 

we are in a situation of common interests, from which it may be a small step to trusting 

others will reason in the Kantian manner.  

 Those who employ the simple Kantian protocol even if they do not trust that others 

will are called saints.  They hope to start a movement; sometimes they do.  It is probably true 

that virtually all successful examples of achieving Kantian equilibrium involve some saints, 

who get the ball rolling.   Consider this description of the process.   There is a community of 

individuals each of whom is a conditional Kantian optimizer.  There are two behaviors to 

take: the simple Kantian action or the autarchically rational action (Nash).   An individual i is 

characterized by the fraction qi  of Kantians he must observe in order for him to take the 

Kantian action.  qi   is i’s threshold.   Let the distribution function of qi  be Q: that is fraction 

Q(q)  have a threshold of qi ≤ q  .    Suppose the distribution function Q has the graph in 

figure 1a:  

     

  

 

 

 

 

                                                   
8

 Foyle’s War, an excellent BBC series, invokes ‘doing one’s bit’ in almost every episode.  The theme of the series is that most people 

did their bit; the detective Foyle’s job was to chase down those who took advantage of the war by doing well for themselves at the 

expense of others.  The series describes a culture of cooperation that many say characterized Britain during the war years, and that has 

largely faded away, exemplified, among other things, by the growing conservatism of the Labour Party.   
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                                                    Figure 1a 

 

Then we will observe an equilibrium where exactly fraction q*   take the 

Kantian action.  For suppose that exactly q < q*   are cooperating.   Then 

fraction Q(q) > q   wish to cooperate, and so the fraction of cooperators increases.  Similarly, 

if q > q*   the fraction of cooperators decreases.  The only stable equilibrium is q*  .   On the 

other hand, in figure 1b, the stable equilibria are q*∈{0,1}  .    

 

 

 

  

 

 

 

 

                                            Figure 1b 

 A saint is an individual whose threshold is zero.   If there is a non-trivial number of 

saints, then Q(0) > 0  .  Unconditional Nash players have a threshold of one.  Figure 1c 

illustrates a situation with both non-trivial fraction of saints and a non-trivial fraction of Nash 

players.  A moment’s thought will convince the reader that, when saints exist, there is at least 

one stable equilibrium with a positive fraction of cooperators, as in figure 1c at q*  .   

 

 

 

 

 

 

                   Figure 1c 
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Absent the existence of saints, we might be in the situation of figure 1b, and universal Nash 

play would be a stable point, even though everybody is a conditional Kantian optimizer. 

 

7.  Non-symmetric economic games 

 I now turn to non-symmetric games.   First, I briefly define two generalizations of 

simple Kantian equilibrium in a general context.  Let a game with n players be specified by 

their payoff functions V i  where the strategy space of all players is a common non-negative 

interval I (which may be infinite) and so the domain of each payoff function is I n  .  

   

Definition 3  A strategy profile E = (E1,...,En )  is a multiplicative Kantian equilibrium if no 

player would advocate multiplying all strategies by some common non-negative factor.   That 

is: 
  (∀i)(argmax

r≥0
V i (rE1,...,rEn ) = 1)   

I will call E a K ×  equilibrium. 

 Here, the Kantian fisher, who is contemplating expanding his fishing time, thinks as 

follows. “I would like to increase my fishing time by 10%; but I should do so only if I would 

prefer that all fishers increase their fishing time by 10%.”    What ‘taking the same action’ 

means is now a more complex move than in simple Kantian equilibrium.  It follows that an 

equilibrium, subject to this optimization protocol, is a strategy vector as defined above.  

Mathematically, the counterfactual the player imagines is not that only she deviates (as in 

Nash) but that deviations are restricted to the ray in ℜ+
n   through the current strategy profile.   

 We have: 

Proposition 8  Let {V i}   be any monotonic game.  Let E* = (E1*,...,En*)   be a strictly 

positive multiplicative Kantian equilibrium.  Then E*  is Pareto efficient in the game. 

Proof:  See Roemer (2014). 

 Let us apply Proposition 8 to a heterogeneous fishing economy, where the 

preferences of the n players are now u1,...,un  and the production function is G.  Fish are 

allocated in proportion to labor expended.  The game is defined , as before, by: 

   V Pr,i (Ei ,ES ) = ui ( E
i

ES G(E
S ),Ei )  , 
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which is equation (5.1), altered by indexing each payoff function with i.   It is clear the game 

is  monotone decreasing, as long as G is concave.  It follows from Proposition 8 that any K ×   

is Pareto efficient in the game.  But as before, this does not mean it is Pareto efficient in the 

economy, which requires (at a positive effort vector) that the marginal rate of substitution 

between labor and fish is equal, for each fisher, to the marginal rate of transformation. 

 Applying the definition, we have that E*  is a K ×   equilibrium when: 

  
d
dr r=1

ui ( rE
*i

rE*S
G(rE*S ),r rE

*i

rE*S
) = 0       (7.1) 

which expands to: 

  
u1
i ⋅( E

*i

E*S
′G (E*S )E*S )+ u2

i ⋅E*i = 0

′G (E*S ) = − u2
i

u1
i ,

  

where the last step uses the positivity of E*i  .  Hence: 

Proposition 9. Any positive K ×  equilibrium of the proportional game is Pareto efficient in 

the economy. 

 The hunting game, with the equal-division payoff functions V ED  , requires a 

somewhat different approach. 

 

Definition 4  Let {V i}  be any game where the players’ strategy spaces are a common  non-

negative interval I.  An additive Kantian equilibrium is a strategy profile E*   such that no 

player would prefer to add to all strategies any (feasible) number.  That is: 

  (∀i)(∀r ≥ −minE*i )(argmax
r

V i (E*1 + r,...,E*n + r) = 0)  .   

We call such an equilibrium a K + equilibrium. 

We have:  

Proposition 10.  Let {V i} be any monotone game.  Let E* = (E1*,...,En*)   be any additive 

Kantian equilibrium.  Then E*  is Pareto efficient in the game. 

Proof: Roemer (2014). 

 In the hunting game where players have heterogeneous preferences, the payoff 

functions are: 

  V ED,i (E1,ES ) = ui (G(E
S )

n
,Ei )  . 
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Clearly, this game is monotone increasing, and so it follows that any K + equilibrium is 

Pareto efficient in the game.   To see that such an allocation is also Pareto efficient in the 

economy, apply the definition: 

 

d
dr r=0

ui (G(E
S + nr)
n

,Ei + r) = 0

u1
i ⋅ 1
n

′G (ES )n + u2
i = 0

′G (ES ) = − u2
i

u1
i .

  

Proposition 11.  Any K +   equilibrium of the hunting game is Pareto efficient in the economy. 

 The next proposition states that these two equilibrium concepts are in fact 

generalizations of SKE: 

Proposition 12.   Suppose {V i}   is a symmetric game.  Then its simple Kantian equilibria, 

multiplicative Kantian equilibria, and additive Kantian equilibria coincide. 

Proof: Easy to check. 

 When discussing simple Kantian equilibrium,  I asked the reader to imagine that it is  

possible for a fisher or a hunter or a potential recycler to ask himself, “What is the action I 

would like everyone to take?” and to follow the prescription himself.   Is it credible that 

individuals could optimize in the way required by the two more complex protocols 

introduced in this section, which are necessary to achieve Pareto efficient outcomes in 

situations of heterogeneous preferences? 

 With heterogeneity, we lack solidarity – at least in the sense that common preferences 

imply common interests.   It may still be the case that a sense of solidarity exists when 

preferences are heterogeneous, but it will be more difficult to achieve.    Let us think of how 

heterogeneity may occur in a fishing society.   We might suppose that all fishers have the 

same preferences over fish and leisure, but that they possess different sized boats, capable of 

trolling the waters at different speeds, so some catch more fish per unit time than others.    

Suppose their common preferences over fish and labor are represented by u(x,L)  .    In 

terms of efficiency labor, where Ei = α iLi   and α i   is speed at which one’s canoe travels, we 

have: 

   ui (x,E) = u(x, L
α i )  , 
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and so preferences become heterogeneous in the arguments that are necessary to define the 

proportional solution.    Nevertheless, these fishers could understand that they have a 

common interest in not over-exploiting the lake.  Invoking the multiplicative Kantian 

counterfactual – multiplying everyone’s labor by a constant as representing the fair 

alternative – requires the implicit moral supposition that a fisher is entitled to the advantage 

bestowed by owning a faster boat or having more fishing skill.  It is not obvious why fishing 

communities would possess this morality.  

 Similarly, for the hunting economy to achieve Pareto efficient outcomes when 

preferences or skills are heterogeneous, given its equal-division sharing rule, hunters must 

learn to optimize in the additive way. “I should only take a two-hour nap under that tree if I 

would advocate that we all take a two-hour nap.
9

”   It does not seem to me there is any 

ethically interesting relationship between the nature of the allocation rule  (proportional 

versus equal division) and the conception of fairness (multiplicative versus additive) that 

must be applied in the Kantian counterfactual needed to achieve successful cooperation with 

that rule. My view is that if fishing and hunting societies indeed did learn to use these 

optimization protocols, thereby solving their commons’ tragedies, this happened through 

random cultural evolution.  (See Boyd and Richerson (1985).)   A clever priest 

(Archimedes?) in some fishing tribe deduced the merits of multiplicative Kantian 

optimization, he taught it to the tribe, and they thrived.   Another clever priest (Pythagoras?) 

in a hunting tribe figured out the beauty of additive Kantian optimization.    Knowing the 

virtually infinite complexity that biological evolution has created in living things, is it such a 

stretch to suppose that our ancestors could have discovered these very useful ways of thinking 

through selective and cultural adaption?  (I need not here rehearse the controversy over group 

selection.) 

 Let us pause momentarily to reflect, once more, on the distinction between altruism 

and cooperation in the application of these more complex Kantian protocols to common-pool 

resource games.   In the fishers’ game, the Kantian optimizer rejects expanding her fishing 

time by 5%, at an allocation, if she would not like everyone to expand his fishing time by 5%.  

                                                   
9

 To be precise, if hunters have different efficiencies in hunting, because the additive Kantian protocol requires each to imagine 

changing all hunting times by a constant, more efficient hunters would receive shorter naps in the counterfactual. 
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Why might she not like that alternative? Because the negative externality that others would 

impose upon her by the 5% increase in total fishing time, due to the decreasing-returns nature 

of the technology, makes such an expansion not worthwhile to her.   I emphasize that the 

Kantian counterfactual does not induce her to worry about the negative externality she 

imposes upon others
10

.    Her decision not to expand her fishing time, in this situation, is 

motivated by considerations of her own welfare, not the welfare of others.   There is, it is true, 

a conception of fairness embodied in her use of the Kantian optimization protocol, and to the 

extent that fairness implies a concern for the welfare of others, then she does care about 

others.  But fairness need not be so motivated:  it can be motivated, instead, by the symmetry 

of the problem.    Indeed, the human brain loves symmetry; and the evolutionary path through 

which we learned to optimize in the Kantian manner may have been through a prior partiality 

to symmetry that had evolved in us. 

 It is worth pointing out that the information required to calculate the Kantian best-

response at a particular profile of actions is the same as is required for an autarchic optimizer.  

One needs to know the current strategy profile, one’s own preferences, and, in the economic 

examples, the production function.    I showed earlier (Roemer (2014)) that the simple 

dynamics of iterative best responses converges (in well-behaved cases) to the Kantian 

equilibrium.   At a strategy profile (E1,...,En )  , each player calculates the optimal 

multiplicative constant ri  (in the case of the fishing economy) he would like to apply to the 

whole vector, and he plays as his next action riEi  ; thus, at the next stage the strategy profile 

is (r1E1,...,rnEn )  because, out of equilibrium, different players will have different optimal 

re-scalings, ri  .   This dynamic procedure converges to the multiplicative Kantian 

equilibrium (as I said, with well-behaved preferences).  Thus, from a mathematical viewpoint, 

Kantian equilibrium seems very similar to Nash equilibrium, where best-response dynamics 

converge to the Nash equilibrium in well-behaved cases: if we believe people have learned to 

think in the Nash manner, we should extend that belief to their having the cognitive capacity 

to think Kantian. 

 To say that Nash or Kantian equilibrium characterizes a stable point for the fishers 

does not, of course, require them to be mathematicians (although perhaps the visionary priest 

                                                   
10

 I owe this observation to an anonymous referee of my article Roemer (2014). 
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was).   To calculate whether or not to change one’s behavior, a fisher using the Nash protocol 

has to compare his marginal rate of substitution to the average yield of the lake. That is a 

fisher decides to increase his fishing time if: 

  

d
dEi u( E

i

ES G(ES ),Ei ) ≈ (for large n) u1
G(ES )
ES + u2 > 0

⇔ MRS < G(ES )
ES .

  

On the other hand, the rule for the multiplicative Kantian optimizer is to increase his fishing 

time as long as his marginal rate of substitution is less than the marginal productivity of the 

lake.   (This is why the latter protocol gives a stable point that is Pareto efficient.)   It does 

not seem that one rule of thumb is more complex than the other. 

 For hunting communities,  Nash equilibrium if n is large leads to a total failure of 

hunting: 

 
d
dEi u(G(ES )

n
,Ei ) ≈  (for large n) u2 < 0 ⇒ always take a nap!  . 

If the hunting band is small then the rule of thumb is: 

 
d
dEi u(

G(ES )
n

,Ei ) = u1
′G (ES )
n

+ u2 > 0⇔ MRS < ′G (ES )
n

 . 

The rule of thumb for an additive Kantian optimizer is to increase his hunting time if and 

only if MRS < ′G (ES )  .   Mathematically, these two rules of thumb are of similar complexity. 

 Consider the public-good game with heterogeneous preferences:ui (Y ,Ei )  is the 

utility function of player i, where Y is the value of the public good and Ei  is the contribution 

of agent i, with Y = G(ES )  .   The game is defined by : 

   V i (Ei ,ES ) = ui (G(ES ),Ei )  ,  

and the K ×   equilibrium is defined by: 

  
d
dr r=1

ui (G(rES ),rEi ) = u1
i ⋅ ′G (ES )ES + u2

i Ei = 0⇔ MRSi ⋅ E
i

ES = MRT  . 

 Thus, the K ×
 equilibrium of the public-good game is characterized by a condition that is a 

special case of the Samuelson condition for Pareto efficiency in a public-good economy  (see 

(5.6) ).    On the other hand, the K +   equilibrium of the public-good economy is 

characterized by: 

 
d
dr r=0

ui (G(ES + nr),Ei + r) = 0 = u1
i ′G (ES )n + u2

i ⇔ MRSi 1
n
= MRT  , 
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which is, again, a special case of the Samuelson condition.   So both additive and 

multiplicative Kantian optimization protocols deliver Pareto efficiency in the public-good 

economy, although they lead to different allocations (except in the case of symmetry).  

 Walker and Ostrom (2009) report on experiments that they performed using a 

common-pool resource game, defined as follows.   Each of 8 players receives an endowment 

of M tokens.  There are two possible investments:  a common-pool resource (CPR), for which 

total monetary returns will equal F(xS ) = (.01)(23xS − 1
4
(xS )2 )  , where xS = xi∑   is the 

sum of investments in this resource, and a ‘treasury bill’ which yields a return of .05x   to an 

investor who invests x.    The monetary returns from the CPR are divided in proportion to 

investments.    Thus, the pay off function of individual i is: 

   
xi

xS
F(xS )+ .05(M − xi )  . 

Because the CPR exhibits diminishing marginal returns, this is a CPR problem, where the 

Nash equilibrium is Pareto inefficient.   If M is sufficiently large, then we can ignore M in the 

objective function, and simply view the term −.05xi  as a disutility from investment.  Thus, 

this is simply a fishing economy where an agent’s utility equals consumption minus a linear 

term in effort.    To compute the SKE, the individual maximizes: 

   
1
n
F(nx)+ .5(M − x)  . 

The solution is xS = 36  , and so with n = 8  , each individual should invest 4.5  tokens – it is 

unfortunate that this investment was not feasible in the Walker-Ostrom game, since 

investments had to be integers.     In the symmetric Nash equilibrium, x = 8 , which is 

feasible as long as M ≥ 8  . Many variations on this game were performed, and it is beyond 

my scope to discuss them here.   What interests me is that the authors focus on cooperation 

which they conceptualize as the maximization of total income.  Granted, this is achieved in 

the SKE.    However, it is not achieved because each individual is thinking to maximize total 

income, in the Kantian proposal, but rather because she is thinking about doing what she’d 

like everyone to do.   I believe this distinction is important, because the motivations in the 

two explanations are different.   Walker and Ostrom are implicitly saying that the reason 

cooperation often fails is that participants are not thinking of the collective good.  (See my 

earlier quotation from their article in section 5.)   This would lead to the prescription that a 
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social engineer try to induce cooperation in a group by teaching them to think of the 

collective good.  Far less demanding, I say, and more natural for homo sapiens, is to think in 

terms of behaving fairly, à la Kant. 

 An interesting field experiment is conducted by Bandiera et al (2006).  The authors 

describe the experiment, as follows, which was implemented on a British farm.   There are 

approximately 40 field workers on a given day who will work in a given field.    The farm 

has a fixed wage bill, w, for the day, for this field. It allocates the wage bill to workers in 

proportion to the amount of fruit they pick.  The foreman also announces each day what he 

thinks the productivity of the workers will be.  To model this situation, let’s assume a 

worker’s utility equals his income minus a disutility that increases with the speed at which he 

picks. Then his payoff is: 

   w xi

xS
− h(xi )   

where xi   is the amount he picks and xS = xi∑  , and we assume h is a convex function.  

The SKE of this game is: xi = 0  for all i, and the wage bill is divided equally among the 

workers.   Clearly, the game has not been described accurately, as the owner would not pay 

the workers if they do not produce.  Presumably the foreman’s announcement of expected 

productivity acts as a guide.   In a second field, owned by the same farmer, workers were 

paid a fixed amount per kilo picked.  The authors state their results:  

First, individuals cooperate more, namely their productivity is significantly lower, as 

their exposure to the relative incentive scheme increases [i.e., in the first field]. This 

effect is significantly larger for the cohort of early worker arrivals, namely 

individuals who started working at the beginning of the peak season when the 

scheme was first introduced. Second, individuals cooperate more when they work 

with co-workers who have been exposed to the scheme for longer and hence are 

more familiar with the norm.  

 

It is interesting that the authors write in the introduction of their paper:  

 

It is important to stress that cooperation can arise either because of altruism or collusion; 

workers might cooperate either because they truly care about colleagues' payoffs, or 

because they have established an implicit collusive agreement enforced by credible 
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threats of punishment. In this paper we focus on how cooperation evolves with time, 

regardless of its underlying motives. 

 

Here, the authors are saying that either altruism or Nash equilibrium with punishments 

explains what is occurring in the first field:  yet they give no evidence of either altruism or 

the existence of punishments or ostracism.   (They do explicitly refer to the Nash equilibrium 

of the game, in which neither altruism nor punishments exist, and claim that the productivity 

of workers in the first field is quite far below that value.   They do not, however, explicitly 

write down a utility function for workers.)   It seems to me more likely that workers have 

learned Kantian thinking, and are attempting to play the Kantian equilibrium.   

 In private-goods economies of the form (u1,..,un ,G)   we saw that each allocation 

rule  (proportional or equal-division) was associated with a different Kantian optimization 

protocol.      It turns out that, in these economies, one can construct a continuum of allocation 

rules, running from ‘proportional division’ at one pole to ‘equal division’ at the other, each 

one with an associated ‘Kantian optimization protocol,’ with the property that using the right 

protocol with a given allocation rule always produces Pareto efficient outcomes as equilibria.  

(See Roemer (2014).)  I do not review this material here, because it is more technical, and 

because it seems to me that discovering these new protocols would be  more unlikely than 

discovering either the simple additive or multiplicative ones.   One cannot, however, find a 

way of implementing any allocation rule efficiently with some Kantian protocol: the 

allocation rules which can be so implemented span, as I said, a one-parameter family 

‘between’ the proportional and equal-division rules.  (It is only a little misleading to say that 

these rules are ‘convex combinations’ of proportional and equal division.)    Because division 

in proportion to effort expended and equal division are the two ubiquitous conceptions of 

fairness that arise in a multitude of contexts,  there is at least poetry in the fact a family with 

these two rules as its extremes comprises those that can be efficiently implemented by 

Kantian optimization. 

 

8.   Can Kantian equilibrium be rationalized as Nash equilibrium?  

 As I’ve argued, the distinguishing move that behavioral economists make is to 

include non-traditional arguments in the preferences of individuals: these may endow people 
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with altruism, or a sense of fairness, or a sense of dignity or duty.   One might protest that the 

view that optimizers are using a Kantian protocol cannot be distinguished, empirically or in a 

logical sense, from the view that people’s preferences contain these exotic arguments.  In this 

section, I address the question whether Kantian equilibrium can be distinguished from a 

logical viewpoint from Nash equilibrium in which players are endowed with exotic 

preferences. 

 Let me formulate this question in a precise way.   Let us consider the set of two-

person economies (u1,u2,G,X Pr )  where u1  and u2  are any concave self-interested utility 

functions over consumption and efficiency units of labor, G is any concave production 

function transforming total efficiency units of labor into the consumption good, and X Pr   is 

the proportional allocation rule, in which output is divided in proportion to efficiency units of 

labor expended.    Denote the domain of such economies by Ω  . We know that multiplicative 

Kantian equilibrium chooses exactly the Pareto efficient, proportional allocations on this set 

of economies.  (If an economy possesses more than one such allocation, they are all 

multiplicative Kantian equilibrium.)  Let us ask: Is it possible to define a rule for 

transforming the utility functions u1  and u2  in any such economy into utility functions with 

more arguments v1,v2  such that the Nash equilibrium (or equilibria) on the extended 

environment (v1,v2,G,X Pr )   is (or are) the Kantian equilibria of (u1,u2,G,X Pr )?  Were this 

possible, one could claim that Kantian equilibria could always be rationalized as Nash 

equilibria where preferences are more complex than one might have thought. 

 Let me give an example of economies for which this can be done: they are the quasi-

linear economies.   Let u1(x,E) = x − h1(E)  and u2 (x,E) = x − h2 (E)  , where hi   are 

convex functions.   The Pareto efficient allocations in any economy with these preferences 

are those that maximize G(E1 + E2 )− h1(E1)− h2 (E2 )   -- that is, for which  

  ′G (ES ) = h1′(E1) = h2′(E2 )  .      (8.1) 

Hence the multiplicative Kantian equilibria of such an economy are characterized by (8.1) 

and (8.2): 

  x1 = E1

ES G(E
S ), x2 = E2

ES G(E
S )  .      (8.2) 

Now consider the ‘extended’ economy where we define the new preferences: 

  v1(x1, x2,E1,E2 ) = u1(x1,E1)+ u2 (x2,E2 ) = v2 (x1, x2,E1,E2 )  .      (8.3) 
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Let us calculate the Nash equilibria of the game defined by (v1,v2,G,X Pr )  .   The payoff 

functions for the two players are both: 

 V (E1,E2 ) = E1

ES G(E
S )+ E

2

ES G(E
S )− h1(E1)− h2 (E2 ).        (8.3) 

Because V is a concave function, the Nash equilibrium is characterized by the two first-order 

conditions, which we now calculate: 

  

∂
∂E1

V (E1,E2 ) = ′G (ES )− h1′(E1) = 0

∂
∂E2 V (E

1,E2 ) = ′G (ES )− h2′(E2 ) = 0,
      (8.4) 

which is the same as (8.1).  Because, in addition, the allocation must be proportional, we 

conclude that the Nash equilibria of this game comprise precisely the multiplicative Kantian 

equilibria of the original game with classical preferences.    Therefore, if preferences are 

quasi-linear, we cannot distinguish, simply from observing outcomes, whether the 

participants are optimizing using the Kantian protocol with classical, self-interested 

preferences, or the Nash protocol with the extended altruistic preferences, in which each 

player is maximizing the sum of utilities of all players. 

 If such a transformation of every game induced by the economies in Ω  could be 

constructed, we would have to say that Kantian optimization and Nash optimization are 

observationally equivalent.     What the next proposition states is that such is not the case.   

 Consider a pair of transformations of utility functions V i (u1,u2 ) :ℜ+
4 →ℜ  , i = 1,2  , 

where each ‘extended’ utility function V i   is defined on the argument (x1, x2,E1,E2 ) .  We 

can then speak of a game with extended preferences (V 1,V 2,G,X Pr )   where the payoff 

function of player i is: 

 Vi (E1,E2 ) =V i (u1(E
1

ES G(E
S ),E1),u2 (E

2

ES G(E
S ),E2 ))  .   (8.5) 

Proposition 13  There do not exist transformations V 1,V 2  on ordered pairs of concave utility 

functions such that, on Ω  , the Nash equilibria of the extended games 

(V 1(u1,u2 ),V 2 (u1,u2 ),G,X Pr )  coincide with the multiplicative Kantian equilibria of the 

classical  games (u1,u2,G,X Pr )  .    

Proof: 
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1.  Assume, to the contrary, that such transformations V 1  and V 2  do exist, with payoff 

functions for the associcated games as defined in (8.5). .     The strategies for the players 

continue to be their effort levels.   The FOCs for a Nash equilibrium of the extended games 

are: 

  
∂V1(E1,E2 )

∂E1
= ∂V2 (E1,E2 )

∂E2 = 0  . 

Writing out the derivative
11

 for V1  , we have: 

  V1
1u1
1 E1

ES +V2
1u1
2 E2

ES

⎛
⎝⎜

⎞
⎠⎟

′G (ES )+ G(E
S )

ES
E2

ES (V1
1u1
1 −V2

1u1
2 )+V1

1u2
1 = 0  .  (8.6) 

Dividing by u1
1  and using the fact that − ′G (ES ) = u2

1

u1
1  , since by hypothesis the Nash 

equilibrium is the multiplicative Kantian equilibrium, and is hence Pareto efficient,  we have: 

  

V1
1 E1

ES +V2
1 u1

2

u1
1
E2

ES

⎛
⎝⎜

⎞
⎠⎟

′G (ES )+ G(ES )
ES

E2

ES (V1
1 −V2

1 u1
2

u1
1 )−V1

1 ′G (ES ) = 0

′G (ES ) V1
1(E

1

ES −1)+V2
1 u1

2

u1
1
E2

ES

⎛
⎝⎜

⎞
⎠⎟
+ G(ES )E2

(ES )2 V1
1 −V2

1 u1
2

u1
1

⎛
⎝⎜

⎞
⎠⎟
= 0

′G (ES )E
2

ES (−V1
1 +V2

1 u1
2

u1
1 )+ G(ES )E2

(ES )2 V1
1 −V2

1 u1
2

u1
1

⎛
⎝⎜

⎞
⎠⎟
= 0                          (8.7)

 

from which it follows that either V1
1 =V2

1 u1
2

u1
1  or ′G = G(ES )

ES  .   But the second possibility is 

false for any strictly concave G.   Therefore we must have: 

   V1
1 =V2

1 u1
2

u1
1                     (8.8)   

 at the proportional solution on the whole domain Ω  .   In like manner, we have: 

  V2
2 =V1

2 u1
1

u1
2        (8.9) 

on the whole domain.  Therefore, 
V2
2

V1
2 =

V2
1

V1
1    at all proportional solutions on the whole 

domain.    

2.  Now for any two numbers a,b, we can generate a proportional solution, by 

appropriate choice of {u1,u2,G} ,  so that the utilities of the two players are a and b at the 

                                                   
11

 Vj
1

  is the derivative of V 1
  with respect to the utility of the jth player. 
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solution.  Thus,  
V2
2

V1
2 =

V2
1

V1
1 is an identity on ℜ2 .  It therefore follows that the marginal rate of 

substitution of V 1  , when viewed as a function on ℜ2
,  is identical to the marginal rate of 

substitution of V 2   on the whole plane – that is, V 1  and V 2  possess the same map of 

indifference curves.   Therefore V 1   is just an ordinal transform of V 2 , so without loss of 

generality, we may take V 1 =V 2   , since only the ordinal properties of V 1   and V 2   matter – 

both Nash and Kantian equilibrium are ordinal concepts
12

. 

3.  Now choose a pair of utility functions (u1,u2 ) and two points ((x1,E1),(x̂1, Ê1))  such 

that such that the following hold: 

 *  u1  and u2   possess a pair of identical indifference curves, I1  and I 2  , 

 * (x1,E1),(x̂1, Ê1)∈I1  and therefore (x1,E1),(x̂1, Ê1)∈I 2   

 * 
u1
2 (x̂1, Ê1)
u1
2 (x1,E1)

≠ u1
1(x̂1, Ê1)
u1
1(x1,E1)

.
   

This can surely be done: notice the third condition is one on the ratios of first derivatives of 

the two points for the two different utility functions, and although the marginal rates of 

substitution are identical at these two points for the two utility functions this says nothing 

about the ratios of the first derivatives. 

 

Since MRS
u1 (x1,E1) = MRS

u2 (x1,E1) , we can choose G such that 2x1 = G(2E1)   and 

′G (2E1) = MRS(x1,E1)  ;   it follows that ((x1,E1),(x1,E1))   is a proportional solution for the 

economy (u1,u2,G)  , and so  it must be case by the above that: 

   V1
1 =V2

1 u1
2

u1
1        (8.10) 

where the function V 1   is evaluated at (a,b)   where a = u1(x1,E1) and b = u2 (x1,E1)  . 

 

4. But by the same argument, 

    V1
1 =V2

1 u1
2

u1
1    (8.11) 

                                                   
12

 Note that, in our example with quasi-linear preferences, indeed V 1 =V 2 = u1 + u2  .  
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 when the functions are evaluated at (x̂1, Ê1),(x̂1, Ê1)  , since we can produce a production 

function Ĝ   such that  (x̂1, Ê1),(x̂1, Ê1)  is a proportional solution of the economy (u1,u2,Ĝ)  .      

Notice the utilities a,b are the same at this point as they are at ((x1,E1),(x1,E1))  , and so it 

therefore follows from (8.10) and (8.11)  that: 

   
u1
2 (x̂1, Ê1)
u1
1(x̂1, Ê1)

= u1
2 (x1,E1)
u1
1(x1,E1)

 . 

But this contradicts the choice of the two points , because 
u1
2 (x̂1, Ê1)
u1
1(x̂1, Ê1)

≠ u1
2 (x1,E1)
u1
1(x1,E1)

, which 

proves the claim: that is, there are no functions V 1,V 2   such that, on the whole domain Ω ,  

the Nash equilibria of the game induced by V 1,V 2   are the Kantian equilibria of the original 

game.        

 

 Proposition 13 tells us that on the entire domain of economies Ω  there is no way of 

transforming preferences by transformations V 1(u1,u2 ),V 2 (u1,u2 )  such that the Nash 

equilibria of these ‘extended’ games are the Kantian equilibria of the original games.  We 

have, however, shown that if the preferences of both players are quasi-linear, it is possible to 

find such extended preferences: namely V 1(u1,u2 ) =V 2 (u1,u2 ) = u1 + u2  .   One can ask: Are 

there more examples like this?   I do not have the complete answer;  but the next proposition 

shows this cannot be done if both preferences are Cobb-Douglas.  My conjecture is that the 

only case in which such extensions can be made is the quasi-linear one. 

 Define the domain Ω(u1,u2 )   as the set of economies where the two agents’ preferences 

are fixed and represented by utility functions u1  and u2  ,  and G can be any concave 

production function.   Thus the economies are of the form (u1,u2,G,X Pr )   where the 

proportional rule and the preferences are fixed and G varies.   Note that we may have 

different utility functions to represent the same preferences.   But Nash and Kantian 

equilibrium use only (ordinal) preferences.   Thus, for example, the domains 

Ω(u1,u2 )  and Ω(qu1,ru2 )   where q,r > 0   are identical.  

  

Proposition 13a  Let u1,u2   represent different Cobb-Douglas preferences over consumption 

and effort.  On the domain Ω(u1,u2 )  there are no extended preferences V 1(u1,u2 ),V 2 (u1,u2 )   
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such that for all G, the Nash equilibria of the game (V 1(u1,u2 ),V 2 (u1,u2 ),G,X Pr )   coincide 

with the multiplicative Kantian equilibria of the game (u1,u2,G,X Pr )  . 

Proof: 

1.  Let u1(x,E) = xα (1− E)1−α ,u1(x,E) = xβ(1− E)1−β  ,  α ≠ β  .  The condition for an 

allocation (x1,E1, x2,E2 )   to be an interior multiplicative Kantian equilibrium on the domain 

Ω(u1,u2 )  is precisely the conjunction of: 

   

1−α
α

x1

1− E1 =
1−β
β

x2

1− E2      (8.12a)

x1

E1 =
x2

E2                                (8.12b)

1−α
α

E1

1− E1 ≤1                      (8.12c)

 . 

To see this, note that (8.12a) states that the marginal rates of substitution of the two agents 

are equal, (8.12b) states that allocation is proportional, and (8.12c) states that 
1−α
α

x1

1− E1 <
x1

E1     .    The last condition implies that there exists a concave G such that 

′G (ES ) = MRS   and the average product, G(ES ) / ES = x1 + x2

E1 + E2   is greater than or equal to 

the marginal product (which equals the common marginal rate of substitution), which is 

exactly the condition for there existing a concave production function that renders this 

allocation Pareto efficient.  

2.    Let (x1,E1, x2,E2 )  and (x̂1, Ê1, x̂2, Ê2 )  be two interior allocations satisfying (8.12abc) 

and such that E1 ≠ Ê1  , so they are two different proportional solutions for the domain 

Ω(u1,u2 ) .   Define Q1,Q2   so that: 

  Qiui (x̂i , Êi ) = ui (xi ,Ei ) ≡ ai  .               (8.13) 

3.  Suppose, to the contrary of what we aim to prove, there do exist transformations V 1,V 2   

for which the Nash equilibria on economies (V 1(u1,u2 ),V 2 (u1,u2 ),G,X Pr )  are the Kantian 

equilibria on the domain Ω(u1,u2 ) .    The first step of the proof of Proposition 13 continues to 

apply here, so we must have, from (8.8): 

  
V1

1(a1,a2 )
V2

1(a1,a2 )
= u1

2 (x2,E2 )
u1

1(x1,E1)
 and V1

1(a1,a2 )
V2

1(a1,a2 )
= Q

2u1
2 (x̂2, Ê2 )

Q1u1
1(x̂1, Ê1)
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and so:       
u1

2 (x2,E2 )
u1

1(x1,E1)
 =Q

2u1
2 (x̂2, Ê2 )

Q1u1
1(x̂1, Ê1)

.                  (8.14)
13

 

But (8.14) says that    
βa2

x2
/ αa

1

x1
= βa2

x̂2
/ αa

1

x̂1
  or 

   
x2

x̂2
= x1

x̂1
 .                    (8.15) 

However, it is false that if two allocations satisfy (8.12abc) they necessarily satisfy (8.15).   

For (8.12ab) imply that: 

  
1−α
α

E1

1− E1 =
1−β
α

E2

1− E2  and 1−α
α

Ê1

1− Ê1 =
1−β
α

Ê2

1− Ê2   

which together give us: 

   
E1

Ê1
⎛
⎝⎜

⎞
⎠⎟
1− Ê1

1− E1
⎛
⎝⎜

⎞
⎠⎟
= E2

Ê2

⎛
⎝⎜

⎞
⎠⎟
1− Ê2

1− E2

⎛
⎝⎜

⎞
⎠⎟

 ,     (8.16) 

while (8.15) and (8.12b) give us 
E1

Ê1
= E

2

Ê2  .  Together with (8.16) this implies E1 = Ê1  , the 

contradiction that establishes the proposition.   

 It is key that preferences be different in Proposition 13a.  

 

Proposition 13b  Consider the domain of production economies (u,u,G,X Pr )  for any 

concave u.  Let the extended preferences for each player be 

V (u(x1,E1),u(x2,E2 )) = u(x1,E1)+ u(x2,E2 )  .   The symmetric Nash equilibrium of the 

extended game (V (u,u),V (u,u),G,X Pr )  is the multiplicative Kantian equilibrium of the 

game (u,u,G,X Pr ) . 

Proof: 

1.  The payoff function of the first player in the extended game is: 

 V(E1,E2 ) = u(E
1

ES G(E
S ),E1)+ u(E

2

ES G(E
S ),E2 )  .   The FOC for  Nash equilibrium 

is:  
∂V
∂E1

= u1(x
1,E1) ⋅ E1

ES ′G (ES )+G(ES ) E2

(ES )2
⎛
⎝⎜

⎞
⎠⎟
+ u2 (x

1,E1)+ u1(x
2,E2 ) ⋅ E2 ES ′G (ES )−G(ES )

(ES )2
⎛
⎝⎜

⎞
⎠⎟
= 0

 

                                                   
13

 This step requires us to understand that the functions V i
 be applied to whatever representations are chosen to represent the given 

preferences. 
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Notice at a symmetric allocation (i.e., where E1 = E2  and x1 = x2  ) the terms containing G 

annihilate each other, and we are left with: 
    u1 ′G (ES )+ u2 = 0   

at the allocation, which is the condition that the MRS for player 1 equals the MRT.   The 

same analysis holds for player 2.  Hence the allocation is Pareto efficient, and hence it is the 

multiplicative Kantian equilibrium.   

 Notice that Proposition 13b requires that Nash players find the symmetric Nash 

equilibrium, and that they have the same preferences.   The same ‘extended preference’ is 

used as in the example above with quasi-linear preferences (namely, taking the sum of the 

utility functions),  but the quasi-linear result is stronger, as it does not require the players 

have the same preferences.   

  I conclude (from Propositions 13 and 13a)  that Kantian optimization and Nash 

optimization with extended preferences are distinct protocols. These propositions suggest that 

one might be able to distinguish experimentally between the behavioral-economics 

explanation of cooperative behavior  (which is that players are playing the Nash equilibrium 

with extended preferences) and that players are playing Kantian equilibrium with classical 

preferences.   However, Proposition 13b tells us we cannot expect to discover this distinction 

if experiments endow players with the same preferences.     

 [There is more to be said on this topic, which will appear in a subsequent version.] 

  

9.   Production and taxation 

         Paying taxes is, in many countries, sustained by Kantian thinking.  Many studies have 

established that the fines and punishments, combined with the probability of being detected 

to have cheated if one does, are insufficient to explain the degree of tax compliance. 

(citations)  One can again argue whether compliance is explained by Kantian thinking  (‘I 

pay my taxes because it’s the action I’d like everyone to take’) or by exotic preferences  (‘I 

feel like a lousy citizen if I cheat , or I have a duty to pay’).  Once more, my view is that, 

indeed, a person may feel like a lousy citizen, or feel she is abrogating her duty, should she 

cheat, but that such feelings are not the explanation of compliance – they are the byproducts 

of feeling one is shirking if one fails to take the action one believes all should take.  Another 

explanation for why people may cheat is that they have little faith that the state will make 
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good use of tax revenues.    It is difficult, however, to evaluate this justification, as it may be 

one created out of cognitive dissonance to make it easier to justify to oneself one’s cheating. 

 Even if one agrees that the decision to pay taxes honestly is a result of Kantian 

thinking,  this is insufficient to render taxation Pareto efficient; this is because individuals do 

not (by and large) extend their Kantian thinking to their labor-supply decisions.  Consider the 

following simple production economy with taxes.   Individuals have preferences over income 

and labor in efficiency units represented by utility functions ui (x,E) .  Production is linear: 

total output is G(ES ) = a Ei∑  , some a > 0  .    There is a linear income tax given by (t,q)  

where t is the tax rate and q  is the lumpsum demogrant returned to citizens.  The firm is 

competitive and pays a wage of a  per unit labor to worker i.    Thus the worker chooses his 

labor supply to maximize ui ((1− t)aE + q,E)  according to the FOC: 

   u1
i ⋅(1− t)a + u2

i = 0   ,  (9.1) 

where I have assumed, as is usual, that the number of workers is so large that an individual 

can rationally ignore the effect of his labor on q .   By virtue of (9.1), the marginal rate of 

substitution for worker i is equal to (1− t)a  , while efficiency requires that it be equal to the 

marginal rate of transformation, which is a .     The equilibrium so generated is indeed a Nash 

equilibrium of the game where workers’ strategies are their labor supplies.   Note, the larger 

the tax rate is, the larger is the ‘wedge’ between the marginal rates of substitution and the 

marginal rates of transformation. 

 Now let us examine the additive Kantian equilibrium of this game,  using the same 

preferences.   This is a profile of labor supplies (E1,E2,...)   such that nobody would 

advocate that everybody change her labor supply by any additive constant.   Under this 

protocol, workers cannot rationally ignore the effect of the deviation on the demogrant q.     

The FOC defining such an equilibrium is: 

 

  

(∀i) d
dr
ui ((1− t)a(r + Ei )+ ta

n
(E j∑ + r),Ei + r) = 0

u1
i ⋅((1− t)a + ta

n
n)+ u2

i = 0

a = − u2
i

u1
i
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and so the additive Kantian equilibrium is Pareto efficient.   Achieving efficiency requires 

that people extend their Kantian thinking from the decision to comply with taxation to the 

labor-supply decision.    Were people to think in this way, then, at least with linear 

production functions, the decision concerning redistribution could be entirely separated from 

the question of efficiency, for efficiency occurs for any tax rate t. Thus is resolved the well-

known equity-efficiency trade-off. 

 This result does not extend to non-linear production.   Let’s examine additive Kantian 

equilibrium with taxation when the production function is a strictly concave function, G.   

With concave production, profits are non-zero and must be allocated: I will assume equal 

division of profits for the example.  The competitive wage for an efficiency unit of labor is 

w = ′G (ES )  , the marginal product.  The FOC characterizing K +  equilibrium is: 

 
d
dr
ui ((1− t)w(Ei + r)+ t

n
G(ES + nr)+ G(E

S + nr)−w(ES + r)
n

,Ei + r) = 0.  (9.2) 

If workers are contemplating changing everyone’s labor supply, they must understand that 

the wage will change as well, so we must substitute ′G (ES + nr)  for the wage, giving us: 

 
d
dr
ui ((1− t) ′G (ES + nr)(Ei + r)+ t

n
G(ES + nr)+

(1− t)G(E
S + nr)− ′G (ES + nr)(ES + nr)

n
,Ei + r) = 0

   

 

 Expanding this FOC gives: 

  MRSi = − u2
i

u1
i = ′G (ES )+ (1− t) ′′G (ES )(nEi − ES )  .           (9.3) 

It follows that there are four cases in which the K +  equilibrium of the tax problem is Pareto 

efficient: 

 (i) when t = 0  , 

 (ii)  when G is linear  (so ′′G (ES ) = 0 ) , 

 (iii) when the economy is symmetric  (so nEi = ES  ), 

and  (iv) when t = 1  .  

Indeed, we knew (iv) already, because in this case the economy becomes the equal-division 

hunting economy, for which we have shown that K +  is efficient.  And we knew (iii), since 
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we have shown that in symmetric economies, both K +  and K ×   equilibrium reduce to 

simple Kantian equilibrium, and we know the simple Kantian equilibrium in efficient in 

production economies.  More generally, we can surmise that if we are close to one of these 

four situations, then K +  equilibrium does quite well in terms of efficiency. 

 

 On the other hand, the Nash equilibrium in the labor-supply game is given by the 

FOC: 

  
d
dEi u

i ((1− t)wEi + tG(E
S )

n
+ (1− t)G(E

S )−wES

n
,Ei ) = 0    . 

If each agent (rationally) ignores the effect of changing his labor supply on the wage, the 

demogrant, and profits, this reduces to: 

  MRSi = − u2
i

u1
i = (1− t)w = (1− t) ′G (ES )  .        (9.4) 

The Nash equilibrium becomes decreasingly efficient, so to speak, as the tax rate increases, 

while the K +  equilibrium becomes increasingly efficient.  Nash equilibrium is only efficient 

when the economy is laissez-faire.   We knew this, as it is the first theorem of welfare 

economics.   

 [To attempt to make the comparison more precise, we can study an example with 

quasi-linear preferences, for in such economies, there is a simple measure of the inefficiency 

of an allocation – namely, how far the surplus it generates is from the maximum surplus 

(Pareto efficiency).    Consider this example: 

  ui (x,E) = x − α i

2
E2, G(ES ) = aES − b

2
(ES )2  . 

Let E* be the maximum possible total effort and suppose that 
a
b
> E*  , so G is monotone 

increasing on its domain.   An appendix carries out a comparison between the Nash and K +   

equilibria of the game   (perhaps omit this).] 

 

10.  Altruism 

 Until now, I have argued that cooperation is conceptually distinct from altruism.   

I’ve also said that behavioral economists sometimes suppose that altruism is reflected in a 

decision maker’s preferences, and this is used to explain observations that are not easily 
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explained as Nash equilibria of games with self-interested preferences.  My strategy has been 

to argue that often cooperation among self-interested agents suffices to explain these non-

classical outcomes.  In this section, I introduce a concern for others’ welfare into the 

preferences of individuals, and study the conjunction of altruism and cooperation. 

 We continue to work with the production economies (u1,u2,...,un ,G,X)  , where X is 

some allocation rule, except we now view the functions ui  as personal utility functions, and 

contrast these to a person’s all-encompassing utility function, which we define as: 

   Ui (x1,E1,..., xn ,En ) = ui (xi ,Ei )+α iS(u(x,E))         (10.1) 

where S is a Bergson-Samuelson social welfare function, and  

   u(x,E) = (u1(x1,E1),...,un (xn ,En ))  . 

S :ℜn →ℜ   is assumed to be monotone increasing in its n arguments, concave, and 

symmetric.  We assume that α i ≥ 0  , and call this parameter i’s degree of altruism.   We take 

the statement 'α i = ∞ '   to mean that i’s all-encompassing utility function is just the social-

welfare function.   

 Assume that α i = α  , for some α ,  and all i.    Denote by PE(α)  the set of Pareto 

efficient interior allocations of the economic environment (u1,...,un ,G,S,α)  .  Of course, the 

introduction of altruism engenders consumption externalities.     We can expect that, as α   

increases, the set of Pareto efficient allocations shrinks, and this is made precise by the 

following: 

 

Proposition 14  

A.  An allocation {(xi ,Ei )i=1,...,n}∈PE(α)   if and only if: 

 A1.  For all i,  − u2
i (xi ,Ei )
u1
i (xi ,Ei )

= ′G (ES )   

 A2. α ≤ maxi u1
i ⋅Si (u1

j )−1
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
− Sj

j=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

  

 where Sj =
∂S(a1,...,an )

∂a j  , and all functions are evaluated at the stated allocation. 

B.  ′α > α⇒ PE( ′α )⊂ PE(α)  . 

C.  
 
PE(∞) = PE(α)

α≥0
  . 
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  Part A is established in Roemer (2014, Theorem 5).  Note that the first condition, A1, 

in part A simply states that marginal rates of substitution (of the personal utility functions) 

equal the marginal rate of transformation for all persons.   Hence condition A1 simply says 

that the allocation must be in PE(0)  .   The second condition, A2, does not involve G: it is 

this condition that takes care of efficiency in the presence of the consumption externalities.     

Note that as α  increases, condition A2 becomes more demanding, and this establishes Part B 

– the sets PE(α)  are nested.   Part C follows immediately from Part B. 

 In particular, PE(∞)   is simply the set of allocations that maximize social welfare.  

Typically this will consist of a single point. 

 We now observe that typically, when an allocation rule X is given – for specificity, 

take it to be the proportional rule X Pr  -- there will be no Pareto efficient point in PE(α)  that 

satisfies X, for large enough α .     For a typical economy, there is one proportional allocation 

that is Pareto efficient in the self-interested economy – that is, is a member of PE(0)  .   Now 

increase α  -- eventually, PE(α)  shrinks to a point, and in all likelihood, that point will not 

be the allocation that is proportional and efficient in the 0-economy. 

 To solidify this observation, consider an economy with quasi-linear preferences:

ui (x,E) = x − hi (E)  .   S can be any social-welfare function with the properties delineated 

earlier.  Because u1
i ≡ 1  , condition A2 becomes: 

   α ≤ maxi (nSi − Sj )
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟

−1

 .       (10.2) 

For (10.2) to be satisfied at α = ∞   it is necessary that for all i, nSi = Sj
j=1

n

∑   and so all the 

first partial derivatives of S are equal.  Therefore all the utilities are equal, since S is 

symmetric.    But we know that PE(0)  consists of all allocations of a given output G(ES*)  

where ES*  maximizes the surplus in the 0-economy, and the efforts of all individuals are 

fixed.  And we know that PE(∞)⊂ PE(0)  .     It follows that PE(∞)   consists of that 

unique distribution of the product G(ES*)  that equalizes the utilities of all agents.    There is 

no reason that this allocation should distribute output in proportion to labor or in any other 

pre-arranged way.  Therefore, it is almost certainly the case that there are no allocations in 

PE(∞)   that satisfy any particular allocation rule  (other than the rule that equalizes utilities). 
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 It is therefore too much to ask that any equilibrium for an economy 

(u1,...,un ,G,S,X,α)  -- be it Kantian or any other kind – be Pareto efficient for the all-

encompassing preferences.  The most we can hope for is that a Kantian equilibrium be 

second-best efficient.     

 

Definition. Let X(u1,...,un ,G)  be the set of allocations that can be implemented by the 

allocation rule X in the economy (u1,...,un ,G)  .   We say an allocation (x,E)   is second-best 

efficient in (u1,...,un ,G,S,X,α)  if (x,E)∈X(u1,...,un ,G)  and there is no allocation in 

X(u1,...,un ,G)  that Pareto-dominates it, according to the utility functions U1,...,Un .  Denote 

the set of such allocations by PEX (α)  .   

 The definition of Kantian equilibrium for an economy  (u1,...,un ,G,S,X,α)  is the 

same as before.    For specificity, let us write it out for an economy using the proportional 

rule, X Pr  .   Let us call such an (interior) allocation a K × (α,X Pr )   equilibrium, 

understanding that the other parameters (u1,...,un ,G,S)  are all fixed.  It must be the case that 

no player would advocate that all players re-scale their efforts by any non-negative multiple.  

Given the concavity of the problem, and the extended preferences defined by (10.1), the first-

order condition characterizes such allocations: 

 

(∀i) d
dr r=1

[ui ( E
i

ES G(rE
S ),rEi )+α iS(u1(E

1

ES G(rE
S ),...,un (E

n

ES G(rE
S ))]= 0  .    (10.3) 

Denote by K × (α,X Pr )  the multiplicative Kantian equilibria for the an economy with the 

extended preferences (10.3) where α = (α1,...,αn )  and by K × (0,X Pr )  the multiplicative 

Kantian equilibrium of the economy with self-interested preferences  (α i = 0   for all i).  

We now have the somewhat surprising fact: 

Proposition 15   If for all i α i ≥ 0  , K × (α,X Pr ) = K × (0,X Pr )  .   

That is, the Kantian equilibria of an economy are the same, regardless of the degrees of 

altruism α
i !   Kantian optimization is completely insensitive to altruism, as modeled here.  

 This result holds also for K +  equilibria, and for any allocation rule – I use 

K ×  and X Pr  to keep the notation relatively simple. 

Proof: 
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1.  Denote 
d
dr r=1

ui ( E
i

ES G(rE
S ),rEi ) ≡ D1u

i  .   Then we can write (10.3) as: 

 
(∀i) D1u

i +α i S j
j=1

n

∑ ⋅D1u
j = 0  .      (10.4) 

If α i = 0  then D1u
i = 0  .   We now suppose that α i > 0  .  

2.  It  follows that there is a constant k such that  

 (∀i s.t. α i > 0) −α ik = D1u
i  , 

namely, k = Sj
j
∑ ⋅D1u

j  .   

Substituting these equations into step 1, we have:  

  −α ik +α i S j (−α
jk) = 0

j  s.t. α j>0
∑  , 

or kα i (1+ α jS j )
j  s.t. α j>0
∑  . 

Since Sj ≥ 0  , this implies that k = 0  .     

3.  But this means that D1u
i = 0   for all i such that α i > 0 , and therefore D1u

i = 0  for all i, 

by step 1.   This is exactly the condition that the allocation is in K × (0,X Pr )   .                     

  

 We now return to the idea of second-best efficiency.    As I have argued, the most that 

could be asked for is that if an allocation is second-best efficient for an economy, then it is a 

Kantian equilibrium for that economy.   We have: 

 

Proposition 16  Consider the class of economies (u1,...,un ,G,S,X,α)  where α  can take on 

any non-negative value.   Suppose the K – equilibria in economy α = 0   are Pareto efficient.  

Then PEX (α)⊂ K(α,X)   for any α  .  

 For example, let X = X Pr   and K = K ×  .  Then the premise is true: multiplicative 

Kantian equilibria of economies with the proportional allocation rule are Pareto efficient in 

the economy without altruism.   The proposition states that any second-best efficient 

allocation which is proportional, for any α  , is also a multiplicative Kantian equilibrium in 

the α  economy.   The converse  (K(α,X)⊂ PEX (α))   is generally false, because of 

Proposition 15: it is not true that any proportional allocation that is efficient in the 0-economy  
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(that is, a member of K × (0,X Pr )  ) is Pareto-efficient in the economy with largeα  .   Recall 

the above example with quasi-linear economies when α = ∞  . 

 The good news from Proposition 16 is that if there is a second-best efficient 

allocation for an economy with altruism that uses a particular allocation rule X, then it can 

always be implemented as a K equilibrium of the economy where players ignore their 

altruism – which makes their calculation simpler.    If the set K(0,X)   is a singleton, this 

makes things very easy.   Consider, for example, an economy of fishers who are to some 

degree altruistic towards each other.   They employ the proportional allocation rule (each 

keeps his catch), and suppose that the K × (0,X Pr )   is a singleton.   They need only implement 

this allocation, disregarding their altruism.  If there is a second-best efficient allocation under 

the proportional rule, given their altruism, this is it.   If there is not, nothing can be done, 

except, perhaps, to change their allocation rule. 

 An important consequence of  Proposition 15 is that it will be difficult to deduce that 

members of a community who are cooperating are or are not altruistic towards each other, 

because the Kantian equilibria are the same in both cases.   Looking only at the Kantian 

equilibria, economies with altruism are observationally equivalent to ones without altruism.  

We may, of course, look for other kinds of evidence of altruism, but we cannot infer altruism 

from observing the nature of the cooperative equilibrium.  Occam’s razor would seem to 

dictate that altruism not be assumed.  The caveat is that we have here modeled altruism in a 

particular way, and the analog of Proposition 15 might fail to be true with other models of 

altruistic preferences. 

 

11.  Extensions to more complex economies 

 

 In the production economies studied in sections 7-9,  the production input is 

unidimensional: total efficiency units of labor.   In this section, I discuss whether Kantian 

optimization will still engender Pareto efficiency if the argument of the production function 

is multi-dimensional: that is, production is defined on a vector of effort levels,  

G(E1,...,Em )  .  Let 
∂G
∂E j = Gj  , 
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Definition. A production function G is homothetic if for any vector E and for all positive α  , 

and for all components (i, j)  , there is a constant kij   such thatGi (αE) = kijGj (αE)  .   

(Indeed,  kij = Gi (E) /Gj (E)  .)  In other words, on any ray through the origin, the slopes of 

the iso-level curves are constant. 

 A production function G is C-homothetic if for any vector E and for all α  for which 

α + E ≥ 0   , and for all components (i, j)  , there is a constant kij   such that

Gi (α + E) = kijGj (α + E)  , where α + E = (α + E1,...,α + En )  .    (Indeed,  

kij = Gi (E) /Gj (E)  .)  In other words, on any 450  line in the plane  (with n = 2)  , the slopes 

of the intersected iso-level curves are constant.   

 I call the second condition C-homotheticity because it was discussed in Chipman 

(1965), who gives as an example of such a production function

G(E1,E2 ) = −e−E1 − e−E2 + 2  .
14

   

  

Lemma Let n = 2. Let G be twice differentiable. Let H be the Hessian matrix of G.    

  a.  G is homothetic iff for all E 

  (E1,E2 )H
G2

−G1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0  .      (11.1) 

b.  G is C-homothetic if and only if for all E 

  (1,1)H
G2

−G1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0  .  (11.2) 

Proof:  

In case a we have 
d
dα
(G2 (αE)− kG1(αE)) = 0  .   This reduces to (11.1).   A similar 

argument produces (11.2), expanding the equation 
d
dα
(G2 (α + E)− kG1(α + E)) = 0 .   

 

 We now assume that in an economy with n producers, each produces a kind of labor 

that may be idiosyncratic, and so the production function is G(E1,...,En )  .   The competitive 

firm will pay a wage of wi = Gi (E
1,...,En )  for each unit of i '  s labor.  We assume, as before, 

                                                   
14

 I thank J. Silvestre for this citation. 
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that preferences are ui (xi ,Ei )  .    The generalization of a proportional allocation now 

allocates output in proportion to the value of one’s labor: 

Definition.  The proportional allocation rule in an economy with multi-dimensional labor is: 

  Xi (E) = Gi (E)Ei

Gj (E)E j∑ G(E),  for E = (E1,...,En )  . 

(See Roemer and Silvestre (1993).) 

The definitions of K ×  and K +  equilibrium remain unchanged.  

 

Proposition 17    

A. Let G :ℜ+
n →ℜ+   be homothetic and twice differentiable.   Consider the game, whose 

strategies are effort supplies, where the allocation rule is proportional.  If E*   is a positive 

K ×   equilibrium of this game, then it is Pareto efficient. 

B.  Let G be C-homothetic and twice differentiable.   Consider the allocation rule 

Y i (E) = Gi (E)
Gj (E)

j
∑ G(E)  .  If E*  is a positive K +  equilibrium of this game, then it is Pareto 

efficient. 

 

Proof:   We do the calculation for n = 2.   

Part A.    At a K ×   equilibrium, we have: 

 
d
dr
|r=1 u

1( G1(rE)E
i

G1(rE)E
1 +G2 (rE)E

2 G(rE),rE
1) = 0.   

Differentiating and expanding gives: 

   

 u1
1 G1(E)E

1 + G(E)
(∇G ⋅E)2

(E1,E2 )H
G2 (E)
−G1(E)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ u2

1E1 = 0  , 

where ∇G  is the gradient of G evaluated at E.  By the lemma and (11.1), and the fact that 

E1 > 0  ,  this reduces to  u1
1G1(E)+ u2

1 = 0,  or 1’s marginal rate of substitution is equal to his 

marginal rate of transformation.    The same argument applies to player 2.   Hence the 

allocation is Pareto efficient, as this is the condition for interior Pareto efficiency. 

Part B.  At a K +   equilibrium, we have: 
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d
dr
|r=0 u

1( G1(r + E)
G1(r + E)+G2 (r + E)

G(r + E),r + E1) = 0.  

Differentiating, this reduces to: 

  u1
1 G1(E)+

G(E)
(G1(E)+G2 (E))

2 (1,1)H
G2

−G1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ u2

1 = 0  . 

Since G is C-homothetic, this reduces to G1(E) = − u2
1

u1
1  , using (11.2).    Again, we have 

Pareto efficiency.  

 Clearly, the allocation rule Y in part B of Proposition 17 is a generalization of the 

equal-division rule.  It would, however, be strange to call this multi-dimensional analog 

‘equal-division.’  

 From a formal viewpoint, suppose one agent supplies labor, and the other capital.  

The production function is G(L,K )  .   In this interpretation, we must consider u2 (x,K )  to 

be a utility function over consumption and capital supplied.  If G is constant-returns-to-scale 

and homothetic, then the proportional solution is just the Walrasian equilibrium: each of the 

two agents receives the value of his input, priced at their marginal-productivity values.  If G 

is strictly concave,  the entire output is divided, efficiently, between labor and capital, where 

each receives the value of his marginal product.     

 Let us look at the symmetric case, where  all the u’s are the same and the function G 

is symmetric.    The simple Kantian equilibrium is characterized by: 

   
d
dE

u(G(E,...,E)
n

,E) = 0  , 

since at such a vector of efforts, the marginal products cancel out.  The solution is: 

   

  u1
∇G ⋅1
n

⎛
⎝⎜

⎞
⎠⎟ + u2 = 0  , 

which reduces to u1G1 + u2 = 0   -- hence, the allocation is Pareto efficient.  We do not require 

homotheticity of G.   

 The generalization in the heterogeneous case, however, does not extend beyond these 

homothetic production functions.   The lesson may be that it is difficult to organize 

cooperation when production is complex.  Furthermore, even in the homothetic cases, the 

link between fairness and the Kantian counterfactuals is harder to see.  If we supply different 
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kinds of effort, does ‘multiplying all efforts by a constant’ represent a fair change?  I find that 

hard to argue.   I think the appropriate inference is that the Kantian micro-foundation for 

cooperation does not extend in any clear way to these more complex situations. 

 

12.  Existence of K equilibria 

 Most of the propositions state that if an allocation is a Kantian equilibrium, then it has 

certain properties.   In the simple games of section 2, and more generally in the symmetric 

production economies, it is immediately clear from the calculations that SKE exist.  It is not 

obvious, however, that K ×  and K +  equilibria exist in the economies in Ω  .    Roemer (2014) 

shows that under weak conditions, they do. 

 

13. Evolutionary considerations 

 

 Suppose there is a large population, some of whom are Kant and some Nash 

optimizers.    There is random pairing of individuals at each date, who play the prisoners’ 

dilemma.  A player, however, cannot tell ex ante if she is paired with a Kantian or Nash 

optimizer.    Nash players always play D.   Suppose Kantian players play C with probability p, 

knowing that they have a positive probability of encountering a Nash player.   Is there a 

population frequency q of Kantian players that is stable – that is, such that if Kantians choose 

p optimally, knowing q, the expected utilities of the two kinds of player are the same, and so 

we assume they have the same fitness?   It turns out the answer is no:  Nash optimizers will 

drive the Kantians to extinction – unless the Kantians choose p = 1 , in which case the 

society looks as if it consists only of Nash players. 

 However, suppose the Kantian players punish Nash players who defect against them.   

In this formulation, Kantian players always play C; if they meet a Nash player who defects 

on them, they punish the Nash player: they impose on him a penalty of one.   Imposing this 

punishment costs the Kantian player δ > 0  .     Therefore, if the frequency of Kantian players 

is q, the Nash player either faces the standard PD game, should he meet a Nash optimizer, or 

if he meets a Kantian, he faces the payoffs (0,0)  for the plays C and D.  Now it is the Nash 

players’ turn to randomize.   If all Nash players play C with probability p, their expected 

payoff is: 
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V N = q ⋅0 + (1− q)(p2 ⋅0 + p(1− p)(1− c)− b(1− p)2 ) = (1− q)(1− p)(p(1− c)− b(1− p))  .  

(13.1) 

The Nash players choose p to maximize V N  .   

 We consider case b of Proposition 4, where in a Kantian world, the optimal mixed 

strategy is to cooperate with probability one.    In (13.1), the sign of p2   is negative, because 

1− c + b > 0 , and so we examine the FOC for maximizing V N with respect to p, which solves 

to p̂ = 1− c + 2b
2(1− c + b)

 .   But, since c >1  in this case, p̂ >1  : therefore, the solution for the 

Nash player is p* = 1  , to cooperate fully.    Therefore both Nash and Kantian players receive 

an expected payoff of one; the size of δ  is immaterial, since punishment is meted out with 

probability zero.   Thus, any population frequency q is stable. 

 It follows that if the Kantian protocol includes a prescription to punish those do not 

cooperate, as I have argued that it does,  then the economy will look as if everyone is 

Kantian: there is full cooperation.   

   

14.  Historical examples  (to be written) 

 

15. Conclusion 

 I have been at pains to argue that one can understand cooperation without asserting 

that individuals are altruistic or possess social preferences.    This view is at odds with most 

of the recent literature on cooperation and reciprocity.   I maintain that the main action, in 

distinguishing cooperative from non-cooperative behavior, lies in the different optimization 

protocols that decision makers employ, not in their having different preferences for different 

occasions.    I have tried to argue this distinction is not semantic.  I characterize behavioral 

economics as attempting to explain non-classical behavior as Nash equilibria of games with 

players who possess exotic preferences – whose arguments include things like a sense of duty 

or fairness or a love of equality or a warm glow.   My counter-proposal is that the sense of 

fairness is important, but it is not parsimoniously modeled as an argument of preferences: 

rather it induces people to optimize in a Kantian way.  Nor do I deny that humans enjoy 

warm glows from behaving cooperatively, but that does not entail that the reason they do so 
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is to generate the warm glow.    The warm glow is an unintended by-product, in the words of 

Elster. 

 My view, following Michael Tomasello, is that humans are able to optimize in the 

Kantian way, by contemplating the universalization of their actions, because they evolved to 

understand joint intentionality.  As Tomasello (2014, 33) writes:  

Early humans’ new form of collaborative activity was unique among primates because it was 

structured by joint goals and joint attention into a kind of second-personal joint intentionality 

of the moment, a ‘we’ intentionality with a particular other, within which each participant had 

an individual role and an individual perspective. Early humans’ new form of cooperative 

communication – the natural gestures of pointing and pantomiming – enabled them to 

coordinate their roles and perspectives on external situations with a collaborative partner 

toward various kinds of joint objectives. 

 

The autarchic reasoning that is postulated in Nash equilibrium is just not the way we 

naturally think – at least in some situations.   

 Nor is ‘magical thinking’ necessary.   I need not believe, weirdly, that my taking an 

action will cause others to take it.   It suffices that there be a situation of solidarity – that we 

are all in the same boat – and that we trust one another.  To the extent that solidarity is 

reduced by differentiation or that trust is reduced by non-cooperative behavior of a 

significant fraction, decision-makers may switch their optimization protocol from Kant to 

Nash.   The understanding of switching protocols – in either direction – is the domain of 

psychology.    (See the work of David Rand.) 

 Proposition 15 can be interpreted as saying that economies where people cooperate 

are (under certain conditions) observationally equivalent to ones where they cooperate and 

are altruistic towards each other.   Another way of saying this is that teaching people to be 

altruistic will not necessarily enable them to expand their degree of cooperation.   I believe 

this is a hopeful result for our species, because it is, I think, much easier for people to 

employ their conception of fairness in dealing with others than to extend their altruism to 

others.   Many have argued that altruism is not easily extended beyond one’s kin and close 

friends.   But we have many examples where a sense of fairness induces cooperation among 

millions. 
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