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Abstract

Evidence from cognitive sciences shows that some choices are conscious and reflect individual pref-

erences while others tend to be intuitive, driven by analogies with past experiences. Under these

circumstances, standard revealed preference analysis might not be valid because not all choices are

the consequence of individual tastes. We here propose a behavioral model that formalizes how con-

scious and intuitive choices arise by modeling a decision maker composed by two systems. One system

compares past decision problems with the one the decision maker faces, and it replicates past behavior

when the problems are similar enough (Intuitive choices). Otherwise, a second system is activated

and preferences are maximized (Conscious choices). We show that it is possible to restore standard

revealed preference techniques by presenting a novel method capable of finding conscious choices. Fi-

nally, we provide a choice theoretical foundation of the model and discuss its importance as a general

framework to study behavioral inertia.

(JEL D01, D03, D60)

Keywords: Dual Processes, Fast and Slow Thinking, Similarity, Revealed Preferences, Memory, Intuition

1 Introduction

Behavioral economics has posed a serious challenge to the standard revealed preference analysis

since it has documented and studied numerous behaviors inconsistent with preference maximiza-

tion. Many of these inconsistencies arise because maximizing preferences is effortful for decision
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makers, as it requires to consciously analyze the problem at hand in order to find the best course

of action. People often tend not to exert the necessary effort to maximize preferences and, instead,

they make intuitive decisions that, ultimately, may lead to inconsistent choices. Under these con-

ditions, standard revealed preference analysis is misleading. The fact that x is being chosen from

menu A does not imply that x is preferred to any other alternative in the menu, unless x was

consciously chosen from A.

Intuitive decisions are ubiquitous. Think about daily routines. Few of the choices we make

every day are actually the result of a conscious decision making process. Many times we just

intuitively stick to decisions we have only consciously thought of once. This mechanism is not only

important for marginal decisions. As highlighted by Simon (1987), managers take many intuitive

decisions when deciding investment strategies for their firms. Moreover, according to Kahneman

(2002), experts such as managers, doctors or policy makers often make intuitive decisions or follow

their hunches due to their extensive experience. Thus, understanding how intuitive decisions arise

can be crucial not only for individual welfare but also for the welfare of the society as a whole

given the important implications that some of these intuitive decisions have.

The dichotomy between fast and intuitive decisions versus slow and conscious ones has been

formally studied in cognitive sciences at least since Schneider and Shiffrin (1977). The seminal

work by Evans (1977) and the successive models and findings in McAndrews, Glisky and Schacter

(1987), Evans (1989), Reber (1989), Epstein (1994) and Evans and Over (1996) stimulated the

creation of a coherent theory of the individual mind as an interaction of two systems called Dual

Process Theory that is described in Evans and Frankish (2009) and Kahneman (2011). System

1 is associative and unconscious. System 2 is analytic, conscious and demanding of cognitive

capacity.1 Using analogies, System 1, source of intuitive choices, draws from past behavior to

influence decisions. System 2, source of conscious choices, is costly and hence is only activated

to solve problems for which past experience cannot be used by System 1. The associative nature

of System 1 makes analogies extremely important for individual behavior and it highlights the

centrality of the timing of decision problems to understand choices.

Past behavior can influence present choices making standard revealed preference analysis pow-

erless unless the sequentiality of choices is taken into account. If standard revealed preference

analysis fails, how can we do welfare analysis? Choices can be intuitive because driven by the

analogies System 1 makes. Thus, it is crucial for the revelation of preferences to determine (i) how

intuitive choices arise and (ii) how to filter the data and disregard uninformative observations.2

These are the research questions we address in this paper.

To answer the first question we propose a simple formalization of Dual Process Theory. To the

best of our knowledge there is no tractable formalization of such theory, thus the first contribution

1The names of the two systems appeared for the first time in Stanovich (1999). See Evans and Frankish (2009)
to get a deeper description of the two different systems and of the historical development of the theory.

2See Rubinstein (2007) and Rubinstein (2015) for a similar distinction between conscious and intuitive strategic
choices for players participating in a game. See also the distinction in Cunningham and de Quidt (2015) between
implicit and explicit attitudes.
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of the present paper is to propose a formal model that can be used in standard economic analysis. In

section 3, we model a decision maker composed by the two described systems. System 1 compares

every decision environment with the ones that the decision maker has already faced according to

some given similarity measure. Behavior is replicated from those past problems that are similar

enough to the present one, i.e. the similarity between the problems passes some threshold that

represents the cost of activating the other system. If there are no such problems, System 2 chooses

the best available option by maximizing a rational preference relation. Think for example of a

consumer that buys a bundle of products from a shelf in the supermarket. The first time he faces

the shelf, he tries to find the bundle that best fits his preferences. Afterwards, if the price and

arrangement of products do not change too much, he will perceive the two decision problems as if

they are the same and so he will intuitively stick to the past chosen bundle. If on the contrary, the

change in price and arrangement of the products is evident to him, he will choose by maximizing

his preferences again.

Even in such a simple framework, there is no trivial way to distinguish which choices are made

intuitively and which ones are made consciously. Following the example, suppose our consumer

faces again the same problem but this time a new bundle is available and he sticks with the old

choice. Is it because the old bundle is preferred to the new one? Or is it because he is choosing

intuitively? We show how to restore standard revealed preference analysis and thus answer the

second research question by understanding in which decisions System 2 must have been active.

Section 4 assumes that (i) the decision maker behaves according to our model and (ii) the similarity

function is known while the threshold is not, i.e the cognitive costs of activating System 2 are

unknown.3 We then show that, for every sequence of decision problems, it is possible to identify a

set of conscious observations and the interval in which the cognitive costs should lie. To the best of

our knowledge this is the first paper attempting to assess such costs from observed behavior. We

do this by means of an algorithm that uses the analogies made by System 1. First notice that new

observations, i.e. those in which the choice is an alternative that had never been chosen before,

must be generated by System 2. No past behavior could have been replicated. Starting from these

observations, the algorithm iterates the following idea. If an observation is generated by System

2, any other more novel observation, that is any problem which is less similar to those decision

problems that preceded it, must be also generated by System 2. Novelty depends on two factors:

(i) how System 1 makes associations and (ii) the sequence of decision problems the decision maker

has faced. These two are the factors the algorithm exploits to find conscious choices. Returning

to our consumer, if we know that after a change in the price of the products on the shelf, the

consumer chose consciously, then he must have done so also in all those periods where the change

was even more evident.

The algorithm identifies a set of intuitive decisions, i.e. those made by System 1, in a similar

fashion, that is, first it highlights some observations that have to be intuitive and then uses this

information to reveal other intuitive observations. In doing this, we consider cyclical datasets, i.e.

3See sections 3 and 4 for a justification of the latter hypothesis.
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datasets in which the standard revealed preference relation is cyclic. Notice that any cycle must

contain at least one intuitive observation, given that observations generated by System 2 cannot

create cycles in the revealed preference. Then, a least novel observation in a cycle, i.e. one that is

more similar to its past among those forming a cycle, must be intuitive. Once we know that one

observation is generated by System 1, so must be all observations not included in the cycle that are

even less novel. Thus, the algorithm finds a set that contains only conscious observations and, in a

dual way, another one that contains only intuitive ones. Interestingly enough, if the sequence meets

some richness conditions, such sets contain all conscious and intuitive observations respectively.

Obviously, knowing these two sets gives us crucial information regarding individual preferences and

the degree of similarity that is needed to activate System 2. In fact, understanding if some decisions

were made intuitively is very important to understand how analogies are made. Even if intuitive

choices do not reveal individual preferences, they tell us what problems are considered similar

enough by the decision maker. What is similar enough depends on the similarity threshold, thus

intuitive choices provide crucial information regarding the unknown cognitive costs of activation

of System 2.

It is important to notice that the preference revelation strategy we use in the paper agrees with

the one used in Bernheim and Rangel (2009). They analyze the same problem of eliciting individual

preferences from behavioral datasets, and they do this in two stages. In a first stage they take as

given the welfare relevant domain, that is the set of observations from which individual preferences

can be revealed, and then in a second stage they analyze the welfare relevant observations and

propose a criterion for the revelation of preferences that does not assume any particular choice

procedure to make welfare judgments.4 Even if similar, our approach differs in two important

aspects. First, by modeling conscious and intuitive choices, we propose a particular method to find

the welfare relevant domain, i.e. the algorithm highlighting a set of conscious choices. Second, by

proposing a specific choice procedure, we use standard revealed preference analysis on the relevant

domain, thus our method, by being behaviorally based, is less conservative for the elicitation of

individual preferences. In this sense, our stance is also similar to the one proposed in Rubinstein

and Salant (2012) and Masatlioglu, Nakajima and Ozbay (2012) where welfare analysis comes from

understanding the behavioral process that generated the data. Thus, falsifiability of the model

becomes a central concern.

In section 5 we propose a testable condition that is a weakening of the Strong Axiom of Revealed

Preference that characterizes our model and thus renders it falsifiable. Moreover, we show that if

the data are rich enough, in particular if we observe choices made by an homogeneous population,

two simple consistency requirements not only characterize the model but also allow us to uniquely

identify individual preferences and how analogies between decision problems are made.

Section 6 discusses some possible extensions of the base model. First, we analyze the possibility

4Notice that Apesteguia and Ballester (Forthcoming) propose an approach to measure the welfare of an individual
from a given dataset that is also choice-procedure free. They do so by providing a model-free method to measure
how close actual behavior is to the preference that best reflects the choices in the dataset.
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of a decision maker with imperfect memory, that is, that recalls only the m most recent decision

problems. We show that such extension does not hinder our algorithmic analysis. In fact, not only

the analysis can be reproduced but also, with rich enough data, it is possible to identify the pref-

erences and how similarity comparisons are made by analyzing just one sequence of observations,

that is, without recurring to social data. Second, we study the impact of a weaker assumption re-

garding the similarity of different problems. We allow for the possibility of having only ordinal and

partial information on it. Interestingly enough, we find the logic behind the algorithm to be robust

to this extension. Section 7 discusses further implications of the model for the understanding of

sticky behavior. In particular the model can be seen as a general framework capable of formalizing

the idea of behavioral inertia.5 The appendix contains all figures, proofs and the estimation of the

similarity function from an heterogeneous population of individuals sharing it.

2 Related Literature

In our model the presence of similarity comparisons makes behavior more sticky, that is, if two

environments are similar enough then behavior is replicated. This is a different approach with

respect to the theory for decisions under uncertainty proposed in Gilboa and Schmeidler (1995)

and summarized in Gilboa and Schmeidler (2001). In case-based decision theory, as in our model,

a decision maker uses a similarity function in order to assess how much alike are the problem he

is facing and the ones he has in his memory. In that model the decision maker tends to choose

the action that performed better in past similar cases. There are two main differences with the

approach we propose here. First, from a conceptual standpoint, our model relies on the idea

of two systems interacting during the decision making process. Second, from a technical point

of view, our model uses the similarity in combination with a threshold to determine whether

the individual replicates past behavior or maximizes preferences while in Gilboa and Schmeidler

(1995) preferences are always maximized. Nevertheless, the two models agree on the importance

of experiences embedded in the memory of the decision maker in shaping observed behavior.

Finally, we would like to stress that even if the behavioral model we propose is new and it is

a first formalization of Dual Process Theory, nonetheless the idea that observed behavior can be

the outcome of the interaction between two different selves is not new and it dates back at least

to Strotz (1955). Strotz kind of models, such as Gul and Pesendorfer (2001) or Fudenberg and

Levine (2006), are different from the behavioral model we introduce here, since they represent the

two selves as two agents with different and conflicting preferences, usually long-run vs short-run

preferences.6 In our approach however, the two systems are inherently different one from the other.

One uses analogies to deal with the environment in which the decision maker acts, while the other

one uses a preference relation to consciously choose among the alternatives available to the decision

5See Chetty (2015) for a discussion of the importance of understanding behavioral inertia for public policy.
6In some models the difference between the two selves comes from the fact that they have different information.

See for example Cunningham (2015) that proposes a model of decision making where the two selves hierarchically
aggregate information before choosing an alternative.
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maker. Furthermore, which system is activated in a particular decision problem depends on the

problems that have been experienced and how similar they are with the present one and thus, it

does not depend on whether the decision is affecting the present or the future.7

3 Dual Decision Processes

Let X and E be two finite sets. The decision maker (DM) faces at every moment in time t a

decision problem (At, et) with At ⊆ X and et ∈ E. The set of alternatives At that is available at

time t, and from which the DM has to make a choice, is usually called the menu. An alternative

is any element of choice like consumption bundles, lotteries or even streams of consumption. The

environment et is a description of the possible characteristics of the problem that the DM faces at

time t.8 We simply denote by at ∈ At the chosen alternative at time t. With little abuse of the

notation, we refer to the couple formed by the decision problem (At, et) and the chosen alternative

at as observation t. We denote the collection of observations in the sequence {(At, et, at)}Tt=1 as D,

i.e. D = {1, ..., T}.
The DM is composed by two systems, System 1 (S1) and System 2 (S2) and the chosen alter-

native is determined by either one of them. S1 is constantly operating and uses analogies to relate

the decision environment the DM is facing with past ones. If a past environment is similar enough

to the one the DM is facing, then S1 replicates the choice made in the past whenever available.

If no past environment is similar enough or replication is not possible, S2 is activated. S2 uses a

preference relation to compare the alternatives in the menu and chooses the best one. We call this

behavioral model a dual decision(DD) process.

Formally, let σ : E × E → [0, 1] be the similarity function. The value σ(e, e′) measures how

similar environment e is with respect to e′. S1 is endowed with a similarity threshold α ∈ [0, 1] that

delimits which pairs of environments are similar enough. Whenever σ(e, e′) > α the individual

considers e to be similar enough to e′. At time t and facing the decision problem (At, et), S1

executes a choice if it can replicate the choice of a previous period s < t such that σ(et, es) > α.

The choice is the alternative as chosen in one such period. That is, if the DM faces a decision

environment et that is similar enough to a decision environment es he has already faced and the

alternative chosen in s is present in t, the DM chooses it again in t.9 S2 is endowed with a preference

relation � over the set of alternatives.10 At time t, if S2 is activated, the most preferred available

7Nevertheless, we do not exclude the possibility that the fact that a decision affects the present or the future
has some kind of influence on how analogies are made.

8See below for some examples of environments.
9Notice that we assume that the DM has perfect memory. There is evidence in favor of perfect memory for choices

that are unconscious. See Duhigg (2012) for an informal discussion of how consciously forgotten psychological cues
can still affect our behavior and decisions. However, as shown in section 6, this assumption does not weaken the
analysis.

10For ease of exposition, we assume that � is a strict order, i.e. an asymmetric, transitive and complete binary
relation, defined over X.
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alternative is chosen, that is, S2 chooses the alternative at that maximizes � in At. Summarizing:

at =

as for some s < t such that σ(et, es) > α and as ∈ At,

the maximal element in At with respect to � , otherwise.

Two remarks are useful here. First, notice that intuitive and conscious decisions are separated

by the behavioral parameter α. In some sense α is summarizing the cost of using the cognitive

demanding system, i.e. the laziness of S2 as it is described in Kahneman (2011). The higher

the cost, the lower the threshold. Thus, parameter α captures individual heterogeneity on S1. In

fact, following the common interpretation in cognitive sciences, we take the similarity function as

given, i.e. as an innate component of all individuals, while the similarity threshold, by representing

cognitive costs, is what makes analogy comparisons different at the individual level.11 Notice that

while the similarity function has been widely studied in cognitive sciences, e.g. Tversky (1977),

Medin, Goldstone and Gentner (1993) and Hahn (2014), the cognitive costs of activating S2 are still

an unknown, thus the method we propose in section 4 can be seen as a first attempt of identifying

from observed behavior the interval in which such costs should lie, given the similarity function.

As a second remark, notice that we are describing a class of models because we do not impose

any particular structure on the replicating behavior. We do not specify which alternative would be

chosen when more than one past choice can be replicated. Many different behaviors can be part

of this class, e.g choosing the alternative that was chosen in the most similar past environment

or choosing the alternative that maximizes the preference relation over the ones chosen in similar

enough past environments, etc.12 All the analysis that follows is valid for the class as a whole.

As a final remark, given the centrality of the similarity function for the model, we propose

here some examples of environments that are relevant for economic applications and a possible

similarity function that can be used in such cases.

Environments as Menus: In many economic applications it seems sensible to see the whole

menu of alternatives, e.g. the budget set, as the main driver of analogies. That is, E could be the

set of all possible menus and two decision problems are perceived as similar as their menus are. In

this framework, E = 2X .

Environments as Attributes: Decision makers many times face alternatives that are bundles

of attributes. In those contexts, it is reasonable to assume that the attributes of the available alter-

natives determine the decision environment. If A is the set containing all possible attributes, then

E = 2A.

Environments as Frames: We can think of the set E as the set of frames or ancillary condi-

tions as described in Salant and Rubinstein (2008) and Bernheim and Rangel (2009). Frames are

observable information that is irrelevant for the rational assessment of alternatives, for example

11In the appendix we show how it is possible to recover the similarity function when different individuals share
the same similarity function.

12A formal analysis of these possibilities is available upon request.
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how the products are disposed on a shelf. Every frame can be seen as a set of irrelevant features of

the decision environment. Thus, if the set containing all possible irrelevant features is F , we have

E = 2F .

In all the previous examples it is natural to assume that the similarity function relates differ-

ent environments depending on their commonalities and differences. For example, σ(e, e′) = |e∩e′|
|e∪e′| ,

that is, two environments are more similar the more characteristics they share relative to all the

characteristics they have.13 Although, it is sometimes not possible to have all the information

regarding the similarity function, a case we analyze in section 6, from now on we take E and σ as

given.14

We now provide an example to illustrate the behavioral process we are modeling.

Example 1 Let X = {1, 2, 3, ..., 10}. We assume that environments are menus, i.e. E is the set

of all subsets of X and we assume that σ(A,A′) = |A∩A′|
|A∪A′| . Suppose that S1 is described by α = .55

and that the preference 1 � 2 � 3 � · · · � 10 describes S2. We now explain how our DM makes

choices from the following list of ordered menus:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 3, 4, 7 2, 4, 7 1, 3, 6 1, 2, 3, 4 2, 4, 8 2, 4, 8, 9, 10

In the first period, given the DM has no prior experiences, S2 is going to be active. Thus, the

choice comes from the maximization of preferences, that is, a1 = 3. Then, in the following period,

given that we have σ(A2, A1) = 4
6
> .55, S1 is active and so we would observe a replication of past

choices, that is, a2 = 3. Now, in period 3, notice that the similarity between A3 and A2 or A1 is

always below the similarity threshold and this makes S2 to be active. The preference relation is

maximized and so a3 = 1. A similar reasoning can be applied for the fourth and fifth periods to see

that a4 = 2 and a5 = 1. Then, in period six, S1 is active given that σ(A6, A3) = 3
5
> .55, leading to

a6 = 1. In period seven, given no past environment is similar enough, S2 is active and so a7 = 2.

Finally, in the last period S1 is active again given that σ(A8, A7) = 3
5
> .55 and so behavior will

be replicated, i.e. a8 = 2.

One may wonder what an external observer would understand from this choice behavior. How

would the observer determine which choices were done by S1 or S2 and hence which observations

are informative on our DM’s preferences? Is it possible to retrieve the similarity threshold? In

section 4 we propose an algorithm that allows us to disregard the preferential information coming

from the choices in periods two, six and seven, as it should be, while maintaining all the preferential

information coming from the remaining choices.

13Such function is just a symmetric specification of the more general class considered in Tversky (1977).
14In those cases where the similarity function cannot be completely known, weaker assumptions can be made.

For example, one could think that the similarity function respects the symmetric difference between sets. That is
environment e and environment e′ are more similar than g and g′ if e ∪ e′ \ e ∩ e′ ⊆ g ∪ g′ \ g ∩ g′.
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4 The Revealed Preference Analysis of Dual Decisions

In this section, we discuss how to recognize which observations were generated by either S1 or S2

in a DD process. This information is crucial to elicit the unobservables in the model that are the

sources of individual heterogeneity, that is the preference relation and the similarity threshold. As

we previously discussed in section 3, we take the similarity function, common across individuals,

as given, while we want to understand from observed behavior the cognitive costs of activating S2,

that is the similarity threshold α.15

It is easy to recognize a set of observations that is undoubtedly generated by S2. Notice that

all those observations in which the chosen alternative was never chosen in the past must belong to

this category. This is so because, as no past behavior has been replicated, S1 could not be active.

We call these observations new observations.

In order to identify a first set of observations generated by S1, notice that S2 being rational,

it cannot generate cycles of revealed preference.16 Clearly, for every cycle there must be at least

one observation that is generated by S1. Intuitively, the one corresponding to the most familiar

environment should be a decision mimicking a past behavior. The unconditional familiarity of

observation t is

f(t) = max
s<t,as∈At

σ(et, es).
17

That is, unconditional familiarity measures how similar observation t is to past observations

from which behavior could be replicated, i.e. those past decision problems for which the chosen

alternative is present at t. Then, we say that observation t is a least novel in a cycle if it is part

of a cycle of observations, and within it, it maximizes the value of the unconditional familiarity.

The major challenge is to relate pairs of observations in a way that allows to transfer the

knowledge of which system generated one of them to the other. In order to do so, we introduce a

second measure of familiarity of an observation t, that we call conditional familiarity. Formally,

f(t|at) = max
s<t,as=at

σ(et, es).
18

That is, conditional familiarity measures how similar observation t is with past observations

from which behavior could have been replicated, i.e. those past decision problems for which the

choice is the same as the one at t. The main difference between f(t) and f(t|at) is that the first

one is an ex-ante concept, i.e. before considering the choice, while the second one is an ex-post

concept, i.e. after considering the choice. Our key definition uses these two measures of familiarity

15Notice that, as discussed in section 5, the similarity function and the similarity threshold define a binary
similarity function that is individual specific. Thus, by separating the similarity function from the similarity
threshold we are able to associate individual heterogeneity to a parameter related with individual cognitive costs
without having too many degrees of freedom to properly run the technical analysis.

16As it is standard, a set of observations t1, t2, . . . , tk forms a cycle if ati+1
∈ Ati , i = 1, . . . , k − 1 and at1 ∈ Atk ,

where all chosen alternatives are different.
17W.l.o.g., whenever there is no s < t such that as ∈ At, we say f(t) = 0.
18W.l.o.g., whenever there is no s < t such that as = at, we say f(t|at) = 0.
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to relate pairs of observations.

Definition 1 (Linked Observations) We say that observation t is linked to observation s, and

we write t ∈ L(s), whenever f(t|at) ≤ f(s). We say that observation t is indirectly linked to

observation s if there exists a sequence of observations t1, . . . , tk such that t = t1, tk = s and

ti ∈ L(ti+1) for every i = 1, 2, . . . , k − 1.

Denote by DN the set of all observations that are indirectly linked to new observations and by

DC the set of all observations to which least novel observations in a cycle are indirectly linked.19

We are ready to present the main result of this section. It establishes that observations in DN are

generated by S2, while observations in DC are generated by S1. As a consequence, it guarantees

that the revealed preference of observations in DN , i.e. R(DN), is useful information regarding the

preferences of the individual.20 Moreover, an interval in which the similarity threshold has to lie

is identified. Such interval provides bounds for the individual specific cognitive costs of activating

S2.

Proposition 1 For every collection of observations D generated by a DD process:

1. all observations in DN are generated by S2 while all observations in DC are generated by S1,

2. if x is revealed preferred to y for the set of observations DN , then x � y,

3. max
t∈DN

f(t) ≤ α < min
t∈DC

f(t|at).

To understand the reasoning behind Proposition 1, consider first an observation t that we

know is new, and hence generated by S2. We have learnt that its corresponding environment

is not similar enough to any other previous environment. In other words, f(t) ≤ α. Then, any

observation s for which the conditional familiarity is less than f(t) must be generated by S2 too. In

fact, f(s|as) ≤ f(t) ≤ α implies that no past behavior that could have been replicated in s comes

from an environment that is similar enough to the one in s. Thus, any observation linked with a

new observation must be generated by S2. It is easy to see that this reasoning can be iterated, in

fact, any observation linked with an observation generated by S2 must be generated by S2 too.

Similarly, consider a least novel observation in a cycle t, that we know is generated by S1. Any

observation s for which the unconditional familiarity is greater than the conditional familiarity of t

must be generated by S1 too. In fact, we know that α < f(t|at) because t is generated by S1. Then,

any observation s to which t is linked has an unconditional familiarity above α, which implies that

some past behavior could be replicated by S1, and so such observation must be generated by S1

too. Again, the reasoning can be iterated. Thus, we can start from a small subset of observations

19The binary relation determined by the concept of linked observations is clearly reflexive, thus, new observations
and least novel observations in a cycle are contained in DN and DC respectively.

20We say that x is revealed preferred to y in a set of observations O, and write xR(O)y, if there is a sequence of
different alternatives x1, x2, . . . , xk such that x1 = x, xk = y and for every i = 1, 2, . . . , k − 1 ∈ O, it is xi = at and
xi+1 ∈ At for some t.
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undoubtedly generated by either S1 or S2, inferring from there which other observations are of the

same type.

We now use Example 1 to illustrate the algorithm. In doing so, we show that it is possible to

see our algorithmic analysis in terms of graph theory. In fact, when two observations are linked

we can think of them as connected by an undirected edge. Then, we can clearly see that DN and

DC have to be the sets containing all those nodes that belong to the connected components of new

and least novel observations in a cycle respectively.

Graphical Intuition: Example 1

Suppose that we observe the decisions made by the DM in Example 1, without any knowledge on his

preferences � or similarity threshold α. The following table summarizes the different observations.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 3, 4, 7 2, 4, 7 1, 3, 6 1, 2, 3, 4 2, 4, 8 2, 4, 8, 9, 10

a1 = 3 a2 = 3 a3 = 1 a4 = 2 a5 = 1 a6 = 1 a7 = 2 a8 = 2

We can easily see that the only new observations are observations 1, 3 and 4, and hence we can

directly infer that S2 was active in making the corresponding choices. It is immediate to see that

new observations are always linked to each other and hence, observations 1, 3 and 4 are connected

by undirected edges as in the graph of Figure 1.21

We can go one step further and consider observation 5. From observed behavior we cannot

understand whether the choice comes from maximization of preferences or the replication of past

behavior in period 3. Nevertheless, S2 was active in period 3 and one can easily see that f(5|a5) =
2
5
≤ 3

7
= f(3), making observation 5 linked with observation 3 and according to Proposition 1,

making it generated by S2 too. This is represented in Figure 2.

Consider now observation 7. We cannot directly link observation 7 to either observations 1, 3

or 4, because f(7|a7) = 1
2
> max{f(1), f(3), f(4)}. However, we can indirectly link observation

7 to observation 3 through observation 5, because f(7|a7) = 1
2
≤ 1

2
= f(5), thus making 7 an

element of DN . See Figure 3 for a graphical description. No other observation is indirectly linked

to observations 1, 3 or 4 and hence, DN = {1, 3, 4, 5, 7}. The method rightfully excludes all S1

observations from DN .

The example presents inconsistencies in the revealed preference. Observation 3 and 6 are both

in conflict with observation 2. That is, observations 2 and 3 and 2 and 6 form cycles. Then,

noticing that max{f(2), f(3)} = f(2) and that max{f(2), f(6)} = f(2) = f(6) we can say that

observations 2 and 6 are generated by S1 thanks to Proposition 1, given they are least novel in a

cycle. It is immediate again to see that 2 and 6 are connected by an undirected edge. See Figure 4

for a graphical description.

But then, notice that observation 6 is linked to observation 8 given that f(6|a6) = 3
5
≤ f(8) = 3

5

revealing that the latter must have been generated by S1 too. Figure 5 shows this idea graphically.

21Notice that for any new observation t, f(t|at) = 0.
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Thus, we get DC = {2, 6, 8} that were the observations rightfully excluded from DN . No decision

made by S2 has been cataloged as intuitive. Thanks to the algorithm, we found the two connected

components as shown in Figure 6.

The modified revealed preference exercise helps us determine that alternative 1 is better than

any alternative from 2 to 7, alternative 3 is better than any alternative from 4 to 6, and alterna-

tive 2 is better than alternatives 4, 7 and 8 as it is indeed the case. The value of the similarity

threshold α by Proposition 1 can be correctly determined to be in the interval [0.5, 0.6) thanks to

the information retrieved from observations 7 and 8 respectively.

Notice that in general DN and DC will be proper subsets of the whole S2 and S1 sets of obser-

vations, respectively. The set DN is built upon the set of new observations and those indirectly

linked to them.22 It may be the case that some S2 observations are not linked to other S2 observa-

tions.23 Nonetheless, if the observations are rich enough, it is possible to guarantee that DN and

DC coincide with the sets of conscious and intuitive decisions. In the following section we analyze

a rich dataset, where richness is achieved through social data, that allows for the identification of

the two sets of conscious and intuitive observations.24 More importantly, notice that Proposition

1 relies on one important assumption, that is, the collection of observations is generated by a DD

process. The following section addresses this issue.

5 A Characterization of Dual Decision Processes

In section 4 we showed how to elicit the preferences and the similarity threshold of an individual

that follows a DD process. Here, building upon the results of that section, we provide a necessary

and sufficient condition for a set of observations to be characterized as a DD process with a known

similarity function. In other words, we provide a condition that can be used to falsify our model.

Finally, we provide an alternative characterization of the model whenever the similarity function

is also unknown and observations generated by an homogeneous population are available. This

alternative characterization allows us to uniquely identify the preferences of the DM and also how

similarity comparisons are made.

From the construction of the set DN , we understand that a necessary condition for a dataset to

be generated by a DD process is that the indirect revealed preference we obtain from observations

in DN , i.e. R(DN), must be asymmetric. It turns out that this condition is not only necessary

but also sufficient to represent a sequence of decision problems as if generated by a DD process.

One simple postulate of choice characterizes the whole class of DD processes. Interestingly enough

though, it is possible to characterize such class with a condition that is computationally easier to

22DN is never empty because it always contains the first observation.
23For this reason, nothing guarantees that D \DN are intuitive observations and hence, Proposition 1 needs to

show how to dually construct a set of intuitive decisions DC .
24In section 6 we study the case of a forgetful decision maker and we show how in such case it is possible to

identify the two sets when one sequence of observations is rich enough.
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test.

Axiom 1 (Link-Consistency) A sequence of observations {(At, et, at)}Tt=1 satisfies Link-Consistency

if, for every t ∈ DN , xR(t)y implies not yR(L(t))x.

This is a weakening of the Strong Axiom of Revealed Preference. In fact it imposes that no

cycle can be observed when looking at an observation t in DN and those directly linked to it. This

condition is easy to test computationally because it only asks to check for acyclicity between linked

observations. The next theorem shows that such condition is indeed necessary and sufficient to

characterize DD processes with known similarity.

Theorem 1 A sequence of observations {(At, et, at)}Tt=1 satisfies Link-Consistency if and only if

there exist a preference relation � and a similarity threshold α that characterize a DD process.

The theorem is saying that Link-Consistency makes possible to determine whether the DM is

following a DD process or not. In particular, when the property is satisfied, we can characterize

the preferences of the DM with a completion of R(DN) which is asymmetric thanks to Link-

Consistency and use the lower bound of α as described in Proposition 1 to characterize the similarity

threshold. In fact, by construction, for any observation t outside DN it is possible to find a

preceding observation that can be replicated, i.e. the one defining f(t|at). Clearly the familiarity

of an observation can be defined only if the similarity function is known. In the appendix we

show how to identify such function from a population of heterogeneous individuals following a DD

process. Here we propose an alternative approach, that also uses social data, that allows us to

jointly determine preferences and similarity comparisons.

Notice that we do not assume any particular structure for the sequence of observations we use

as data and hence, the characterization of preferences does not have to be unique, even when the

similarity is known. One way to uniquely characterize the preferences of the DM that allow us

also to determine how similarity comparisons are made, is to get different sequences of observa-

tions generated by an homogeneous population. That is, suppose we observe many and different

sequences of decision problems and choices generated by a population of individuals sharing the

same preferences, similarity threshold and similarity function.25 Let D be the set containing such

sequences and D ∈ D be the collection of observations composing one of them. Then, if D is

rich enough we can perfectly identify not only the preference relation but also, for every decision

environment, which other environments are considered similar enough and which are not. No-

tice that this completely identifies the model. In fact, the similarity threshold and the similarity

function define a binary similarity function, i.e. a Boolean similarity function. That is, given

any environment, the combination of similarity function and similarity threshold partitions the

set of environments in two sets of similar and dissimilar environments. Thus, knowing for every

25It is possible to argue that individuals that share the same socioeconomic characteristics and have similar
cognitive capabilities are likely to be described by the same DD process.
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decision environment which other environments are considered similar enough and which are not,

completely identifies such function.

We say that D is rich if:

• for any x, y ∈ X there exists a D ∈ D such that there is some t ∈ D where x, y 6= as for

s < t and At = {x, y}.

• for any x, y, z ∈ X there exists a D ∈ D such that there is some t ∈ D where x, y, z 6= as for

s < t and At = {x, y, z}.

• for any e, e′ ∈ E and any x, y ∈ X, there exists a D ∈ D such that there is some t ∈ D where

x, y 6= as for s < t− 1 and At−1 = {y}, et−1 = e′, At = {x, y} and et = e.

The first two requirements impose that for every pair and triple of alternatives, there is some

collection D in which until some moment in time t, they have never been chosen.26 That is, for

any pair and triples of alternatives there is a sequence of decision problems in which for some

moment in time t they were part of a new observation. The third requirement imposes that for

any pair of environments and any pair of alternatives there is a sequence of observations such that

the environments are part of two consecutive decision problems in which the two alternatives have

never been chosen before. Thus, the choice in t can be either new or the same as in t− 1. These

conditions allow us to perfectly identify the preferences of the homogeneous population and how

analogies are made whenever the observed choices satisfy some consistency requirements.

Before stating such requirements, it is useful to define a set for any environment e ∈ E that

contains all those environments that would be considered similar enough to e by a DM following

a DD process. Suppose, without loss of generality, that for some D ∈ D there exists t ∈ D such

that At = {x, y} and at = x with x, y 6= as for s < t. If the observations are generated by a DM

following a DD process, then t would be a new observation and x would be revealed preferred to

y. Then let S(e) be defined as follows:

S(e) = {e′ ∈ E| ∃D ∈ D such that, for some t ∈ D, t− 1 = ({y}, e′, y) is new and t = ({x, y}, e, y)}.

For the same reasoning developed before, if the observations are generated by individuals following

a DD process, S(e) would contain only environments considered similar enough to e because the

observed inversion of preferences in t is possible only when past behavior is replicated. In fact, if

y is chosen over x in t, it must be because of replication of behavior in t − 1. This is a concept

similar to the one of revealed preferences. Environment e′ is revealed similar to e whenever such

inversion of preferences occurs. Notice that by richness, S(e) would contain all those environments

that are considered similar enough to e.

26Notice that the first two conditions play the same role of the Universal Domain assumption in standard choice
theory.
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Finally, for any collection D ∈ D define for all observations t ∈ D the following set:

I(t) = {x ∈ X| x = as, for some s < t such that as ∈ At and es ∈ S(et)}.

If the observations are generated by DD processes, I(t) would contain all those past choices that

could be replicated in t. Now we have all the ingredients to state the consistency requirements

that characterize the whole class of DD processes for a rich dataset D. The following axioms are

intended for D,D′ ∈ D.

The first axiom requires that conscious choices are consistent. That is, there do not exist two

observations in which x is consciously chosen over y in one of them and y over x in the other. This

is a weakening of the Weak Axiom of Revealed Preference (WARP).

Axiom 2 (Conscious Consistency (CC)) For any t ∈ D and t′ ∈ D′ such that I(t) = I(t′) =

∅, if x, y ∈ At ∩ At′ and x = at then y 6= at′.

The second axiom requires that intuitive choices come from replication of past behavior.

Axiom 3 (Intuitive Consistency (IC)) For any t ∈ D such that I(t) 6= ∅, at ∈ I(t).

Then we can state the following theorem.

Theorem 2 A rich dataset D satisfies CC and IC if and only if there exist a preference relation �,

a similarity function σ and a similarity threshold α that characterize a DD process. Moreover, the

preference relation � and the binary similarity function defined by σ and α are uniquely identified.

Intuitively, the first two requirements of a rich dataset plus CC assure that the revealed preference

relation constructed from the observations that would have to be explained as conscious choices is

complete and transitive. Then, IC assures that those choices that should be explained as intuitive,

replicate past behavior. Uniqueness comes from the fact that every pairwise comparison between

alternatives and between environments is observable thanks to richness.

6 Extensions

The analysis developed in the previous sections is based on two assumptions that we relax here.

First, we have assumed that the DM has perfect memory. In this section we show that such an

assumption is not needed to perform the algorithmic analysis. Moreover, if some richness condi-

tions are satisfied by the sequence of decision problems under study, we show that by considering

imperfect memory we can completely identify the preferences of the DM and determine which

system generated every single observation by studying just one sequence of observations. The

second assumption we relax concerns the similarity function. We show that the analysis of the

previous sections is perfectly valid, even if we have only partial information regarding the similarity

function.

15



6.1 A Forgetful Decision Maker

So far, we have assumed that the DM has perfect memory, i.e. intuitive decisions can come from

the replication of any past choice. In this section, we depart from such assumption and analyze

the possibility of a DM that forgets older choices.

Suppose the DM can remember up until m ≥ 1 periods of past choices. In a DD-m process,

the chosen action in period t is:

at =

as for some t−m ≤ s < t such that σ(et, es) > α and as ∈ At,

the maximal element in At with respect to � , otherwise.

Notice that we have just changed the periods that are considered by S1 for the replication

of behavior, the structure of the process is otherwise unchanged. Thus, if we take this new

assumption into account, we should be able to directly apply the logic behind the algorithm to

this new framework. This is indeed the case.

We say that an observation is new with imperfect memory whenever at 6= as for all t−m ≤ s < t.

That is, the choice in t was never chosen in the previous m periods. Such observations must be

generated by S2 for the same logic explained in section 4. In a similar fashion, let unconditional

and conditional familiarity with imperfect memory be as follows:

f(t) = max
t−m≤s<t,as∈At

σ(et, es).

f(t|at) = max
t−m≤s<t,as=at

σ(et, es).

Again, the only change is that now, for any observation t, only the preceding m periods are impor-

tant for the replication of behavior, and so they are the only ones considered when defining the two

concepts of familiarity. Then, we say that an observation is the least novel in a cycle with imperfect

memory whenever it maximizes the unconditional familiarity with imperfect memory among those

observations in the cycle. For the same logic we used before, any least novel observation in a cycle

must be generated by S1.

Finally, we say that observation t is linked to observation s whenever f(t|at) ≤ f(s), and

indirectly linked observations are defined in an analogous way. Thus, considering imperfect memory

only changes the key definitions on which the algorithm is based, not the logic behind it. Again, any

observation linked to an observation generated by S2 must be generated by S2 too. Symmetrically,

any observation to which an observation generated by S1 is linked, must be generated by S1 too.

Denote with DN the set containing all observations that are indirectly linked to new observations

with imperfect memory and with DC the set containing all observations to which a least novel in

the cycle with imperfect memory is linked. Then we can state the parallel version of Proposition

1. The proof is omitted.
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Proposition 2 For every collection of observations D generated by a DD-m process:

1. all observations in DN are generated by S2 while all observations in DCare generated by S1,

2. if x is revealed preferred to y for the set of observations DN , then x � y,

3. max
t∈DN

f(t) ≤ α < min
t∈DC

f(t|at).

Similarly, let Link-Consistency∗ be the parallel version of Link-Consistency defined over DN .

We can state the analogous version of Theorem 1. Again, the proof is omitted.

Theorem 3 A sequence of observations {(At, et, at)}Tt=1 satisfies Link-Consistency∗ if and only if

there exist a preference relation � and a similarity threshold α that characterize a DD-m process.

The analysis of a forgetful individual can provide additional insights if we impose some rich-

ness conditions on the sequence of decision problems the DM faces. A sequence of observations

{(At, et, at)}Tt=1 is m-rich for an individual following a DD −m process whenever:

• for any x, y ∈ X there exists a t such that x, y 6= as for t−m ≤ s < t and At = {x, y}.

• for any x, y, z ∈ X there exists a t such that x, y, z 6= as for t−m ≤ s < t and At = {x, y, z}.

• for any e, e′ ∈ E and any x, y ∈ X, there exists a t such that x, y 6= as for t−m−1 ≤ s < t−1

and At−1 = {y}, et−1 = e′, At = {x, y} and et = e.

These conditions are similar to the ones we studied in section 5 so we do not analyzed them

further. One important thing to notice is that in this case richness is imposed on one sequence of

observations not on a collection of sequences. Then, we can state the following:

Proposition 3 For every m−rich sequence of observations {(At, et, at)}Tt=1 generated by a DD−m
process:

1. DN contains all the decisions generated by S2 and DC contains all the decisions generated

by S1, that is DN ∪DC = D,

2. x is revealed preferred to y for the set of observations DN if and only if x � y.

Thus, Proposition 3 highlights the fact that preferences and similarity comparisons of a forgetful

decision maker can be recovered entirely without the need of observing social data whenever the

sequence of observations is rich enough.

Furthermore, for the same reasoning developed in Section 5, anm−rich sequence of observations

allows for the characterization of a DD−m process and the identification of the preferences and

analogies of the DM. Given the analysis would be almost identical, in fact only the definitions of

S(e) and I(t) would slightly change, we omit it to avoid repetitions.27

27Material is available upon request.
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6.2 Revealing S1 and S2 with Partial Information on the Similarity

In this section we show that our algorithmic analysis is robust to weaker assumptions concerning

the knowledge of the similarity function. In particular, we study the case in which only a partial

preorder over pairs of environments is known, denoted by �.28 Such extension can be relevant

in many contexts where it is not possible to estimate the similarity function. In such cases,

it is sensible to assume that at least some binary comparisons between pairs of environments

are known. Coming back to the example of the introduction, we might not know how the DM

compares different prices and dispositions of the products on the shelf, but we might know that for

any combination of prices, a small change in just one price, results in a more similar environment

than a big change in all prices.

We show here that, even if the information regarding similarity comparisons is partial, it is still

possible to construct two sets that contain only S1 and S2 observations respectively, and that one

consistency requirement of the data characterizes all DD processes. In order to do so, we assume

that, if the individual follows a DD process, the similarity σ cardinally represents a completion of

such partial order. Thus, for any e, e′, g, g′ ∈ E, (e, e′) � (g, g′) implies σ(e, e′) ≥ σ(g, g′) and we

say that (e, e′) dominates (g, g′). As with the analysis of a forgetful DM, we first adapt the key

concepts on which the algorithmic analysis is based in order to encompass this new assumption.

The two concepts of familiarity need to be adapted. In particular, given that it is not always

possible to define the most familiar past environment, the new familiarity definitions will be sets

containing undominated pairs of environments. Let F (t) and F (t|at) be defined as follows:

F (t) = {(et, es)|s < t, as ∈ At and there is no w < t such that (et, ew) � (et, es) and aw ∈ At},

F (t|at) = {(et, es)|s < t, as = at and there is no w < t such that (et, ew) � (et, es) and aw ∈ At}.

That is, F (t) and F (t|at) generalize the idea behind f(t) and f(t|at), respectively. In fact,

F (t) contains all those undominated pairs of environments where et is compared with past obser-

vations which choice could be replicated. Similarly, F (t|at) contains all those undominated pairs

of environments where et is compared with past observations which choice could have been repli-

cated. We can easily redefine the concept of link. We say that observation t is linked to the set of

observations O whenever either F (t|at) = ∅ or for all (et, e) ∈ F (t|at) there exists s ∈ O such that

(es, e
′) � (et, e), for some (es, e

′) ∈ F (s). Two things are worth underlining. First, notice that

F (t|at) = ∅ only if t is new, thus, as in the main analysis, new observations are linked with any

other observation. Second notice that this time we defined the link between an observation t and

a set of observations O. This helps understand whether an observation is generated by S2 once

we know that another observation is. If all observations in O are generated by S2 and for each

one of them there exists a pair of environments that dominates a pair in F (t|at) then it must be

28A partial preorder is a reflexive and transitive binary relation. The Symmetric Difference between sets satisfies
this assumption.
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that S2 generated t too. This is because for all observation s in O, the similarity of all pairs of

environments contained in F (s) must be below the similarity threshold.

Then, we say that observation t is S2-indirectly linked to the set of observations O if there

exists a sequence of observations t1, . . . , tk such that t = t1, tk is linked to O and ti is linked

to {ti+1, ti+2, ..., tk} ∪ O for every i = 1, 2, . . . , k − 1. Define DN̂ as the set containing all new

observations and all those observations indirectly linked to the set of new observations. Proposition

4 shows that DN̂ contains only S2 observations.

What about S1? As in section 4, whenever a cycle is present in the data, we know that at least

one of the observations in the cycle must be generated by S1. This time, given that we assume

only a partial knowledge of the similarity comparisons, it is not always possible to define a least

novel observation in a cycle.29 Nevertheless, notice that whenever an observation is inconsistent

with the revealed preference constructed from DN̂ , it must be that such observation is generated

by S1. Thus, say that observation t is cloned if it is either a least novel in a cycle or xR(t)y while

yR(DN̂)x.

Say that observation t is S1-indirectly linked to observation s if there exists a sequence of

observations t1, . . . , tk such that t = t1, tk = s and ti is linked to ti+1 for every i = 1, 2, . . . , k −
1. Whenever we know that observation t is generated by S1, we can infer that observation s

is generated by S1 too, only if for all pairs of environments in F (t|At) there exists a pair of

environments in F (s) that dominates it. In fact, in general, only the similarity of some pairs

of environments contained in F (t|at) is above the similarity threshold. As before, let DĈ be the

set containing all cloned observations and the observations to which they are indirectly linked.

Proposition 4 below shows that DĈ contains only S1 observations.

Proposition 4 For every collection of observations D generated by a dual decision process where

only a partial preorder over pairs of environments is known:

1. all decisions in DN̂ are generated by S2 and all decisions in DĈ are generated by S1,

2. if x is revealed preferred to y for the set of observations DN̂ , then x � y.

Thus, we see that knowing only a partial preorder does not heavily affect the structure of the

algorithm and the main logical steps behind it. What is of interest is that even with this assumption

it is possible to characterize a DD process with just one single condition, that is DN̂ -Consistency.

Axiom 4 (DN̂ -Consistency) A sequence of observations {(At, et, at)}Tt=1 satisfies DN̂ -Consistency

whenever xR(DN̂)y implies not yR(DN̂)x.

DN̂ -Consistency imposes asymmetry on the revealed preference obtained from DN̂ . If a sequence of

decision problems satisfies DN̂ -Consistency when only a partial preorder is known, then we are able

29Obviously, in this context, a least novel observation in a cycle would be an observation t belonging to a cycle
such that for any other observation s in the cycle, F (t) dominates F (s). That is, for any (es, e) ∈ F (s) there exists
(et, e

′) ∈ F (t) such that (et, e
′) � (es, e).
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to characterize the preferences of the individual, the similarity threshold and, more importantly, a

similarity function that respects such preorder. This is what the next theorem states. Notice that

� is assumed to be known.

Theorem 4 A sequence of observations {(At, et, at)}Tt=1 satisfies DN̂ -Consistency if and only if

there exist a preference relation �, a similarity function σ representing � and a similarity threshold

α that characterize a DD process.

Intuitively, the observations in DN̂ are used to construct the preference relation of the individ-

ual. The similarity function represents a possible extension of the partial preorder that respects

the absence of links between observations in DN̂ and the ones outside that set. This is possible

thanks to how DN̂ has been constructed and it allows for the definition of the similarity threshold

in a similar fashion as before.

7 Final Remarks

Cognitive sciences have highlighted the fact that choices can be divided into two categories. Con-

scious choices and intuitive ones. This hinders greatly the use of revealed preference techniques

leaving an open question regarding how to elicit individual preferences, a key question for welfare

analysis.

In this paper, we make two main contributions. First, we propose a new behavioral model

that incorporates the ideas coming from cognitive sciences where individual behavior is seen as the

result of the interaction of two systems, one conscious and rule based, the other one unconscious

and analogy based, being the latter the source of more intuitive choices. Intuitive choices are

the result of replication of past behavior in those decision problems that are perceived as familiar,

that is those problems that are similar enough with other ones that have been already experienced.

Second, we study the implications of the model for observed behavior and we propose an algorithm

that allows to understand which choices are truly informative regarding individual preferences and

to identify an interval in which the cognitive costs of activating the conscious system should lie.

Finally, we provide an axiomatic characterization of the model and we analyze some possible

extensions.

What emerges from the model is that the impact of analogical reasoning can be broad and it

can negatively affect individual welfare. Whenever past behavior can be replicated, analogies make

individual choices less responsive to changes in the menu. That is, new and better alternatives

might be dismissed because the change in the environment is not enough for the individual to make

a conscious decision.30 Individual welfare might suffer for this reason. This is in sharp contrast

with the standard DM studied in economics that consciously and immediately adapts choices to

any change in the menu and that consequently suffers no welfare loss.

30This reasoning is in line with the evidence provided in Carroll et al. (2009) in favor of active decisions.
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The model of decision making we propose can be seen as a possible explanation of different

phenomena and puzzles that are observed in different contexts. In particular it can be seen as a

source of stickiness, i.e. inertia, in individual behavior. Whenever past behavior can be replicated,

analogies between different decision problems make individual choices less responsive to changes

in the quality and number of available options.31 There is a lot of empirical evidence showing

that individual behavior does not adapt immediately to changes in the economic environment.

Consumption tends to be sticky as Carroll, Slacalek and Sommer (2011) show. Traders tend to

show under-reaction to news and trading behavior is less responsive to market conditions, see for

example Chan, Jegadeesh and Lakonishok (1996). Finally, doctors tend to stick to suboptimal

treatments even when no other rational explanation can explain this behavior, e.g. see Hellerstein

(1998). The model we propose allows for a formal analysis of these different frameworks in a simple

and tractable environment. Take a doctor for example. If analogies are made between patients’

symptoms, different patients can be treated with the same drug because they have similar enough

symptoms for the doctor, even if such a treatment is suboptimal for the patients. If this is the case,

older doctors, by having more experience, should be more prone to make this kind of mistakes, in

line with the evidence in Hellerstein (1998).32

The importance of understanding sticky behavior is even clearer when we think of the implica-

tions of the model at a macro level. In fact, for a given population, the aggregate choices will be

less responsive to changes in the environment because a part of the population will make intuitive

decisions. Individuals with a low enough similarity threshold will stick to past behavior disre-

garding new possibilities. The rest of the population will react to the change in the environment

adapting their choices. As a result, the aggregate choices adapt in a slower manner than what

the standard framework would imply. This kind of dynamics can be crucial for the efficacy of the

implementation of a policy, e.g. change in the interest rate, and can lead to wrong predictions if

they are not taken into account.
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A Appendix

A.1 Figures
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Figure 1: New observations are linked with each
other.
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Figure 2: 5 is linked with 3
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Figure 3: 7 is (indirectly) linked with (3) 5
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Figure 4: Least novel observations in a cycle
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Figure 5: 6 is linked with 8
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Figure 6: DN and DC .
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A.2 Proofs

Proof of Proposition 1. We start by proving the statement regarding conscious observations.

Trivially, new observations must be generated by S2 since they cannot replicate any past behavior.

Consider an observation t ∈ DN . By definition, there exists a sequence of observations t1, t2, . . . , tn

with t1 = t, f(ti|ati) ≤ f(ti+1) for all i = 1, 2, ..., n − 1 and tn being new. We prove that t is

generated by S2 recursively. We know that tn is generated by S2. Now assume that tk is generated

by S2 and suppose by contradiction that tk−1 is generated by S1. From the assumption on tk, we

know that f(tk) ≤ α. From the assumption on tk−1, we know that f(tk−1|atk−1
) > α, which implies

f(tk−1|atk−1
) > f(tk), a contradiction with the hypothesis. Hence, tk−1 is also generated by S2,

and the recursive analysis proves that observation t is generated by S2.

We now prove the statement regarding intuitive observations. Consider first an observation t

which is a least novel in a cycle and assume by contradiction that it is generated by S2. Then,

f(t) ≤ α. By definition of least novel in a cycle, it must be f(s) ≤ α for every s in the cycle, making

all decisions in the cycle being generated by S2. This is a contradiction with the maximization of a

preference relation. Consider now an observation t ∈ DC . By definition, there exists a sequence of

observations t1, t2, . . . , tn with tn = t, f(ti|ati) ≤ f(ti+1) for all i = 1, 2, ..., n−1 and t1 being a least

novel in a cycle. We proceed recursively again. Since t1 is generated by S1, we have f(t1|at1) > α.

Now assume that tk is generated by S1 and suppose by contradiction that tk+1 is generated by

S2. We then know that f(tk|atk) > α ≥ f(tk+1), which is a contradiction concluding the recursive

argument.

For the revelation of preferences part, since DN can only contain observations generated by

S2, it is straightforward to see that the revealed information from such a set must respond to the

preferences of the DM. Regarding α, notice that since observations in DN are generated by S2,

we know that maxt∈DN f(t) ≤ α and also that, since observations in DC are generated by S1, we

know that α < mint∈DC f(t|at), which concludes the proof.

Proof of Theorem 1. Necessity: If D is generated by a DD process, then it satisfies Link-

Consistency as explained in the text.

Sufficiency: Now suppose that D satisfies Link-Consistency. We need to show that it can

be explained as if generated by a DD process. We first show that Link-Consistency implies

that the revealed preference relation defined over DN , i.e. R(DN), is asymmetric. Asymmetry

of R(DN) means that it is not possible to construct cycles composed by observations in DN .

Suppose by contradiction that we have a cycle in DN . That is, there is a set of observations

C = {t1, t2, . . . , tk} ⊆ DN such that ati+1
∈ Ati , i = 1, . . . , k − 1 and at1 ∈ Atk . Take the observa-

tion in the cycle with the highest unconditional familiarity. Denote it with ti∗ . Then all the other

observations in the cycle are linked to ti∗ , that is, C ⊆ L(ti∗), contradicting Link-Consistency.

Thus, R(DN) must be asymmetric. By standard mathematical results, we can find a transitive

completion of R(DN), call it �. By construction, all decisions in DN can be seen as the result of

maximizing � over the corresponding menu.
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Define α = maxt∈DN f(t). Notice that by definition of DN , there is no observation s /∈ DN

such that f(s|as) ≤ f(t) for some t ∈ DN . This implies that for all s /∈ DN , f(s|as) > α, so, for all

of them, it is possible to find a preceding observation they would seem to replicate. In particular,

the one defining f(s|as).
Thus, we can represent the choices as if generated by an individual with preference relation �

and similarity threshold α.

Proof of Theorem 2. Necessity: As said in the text, if all DM in the population follow a DD

process with common preferences, similarity function and similarity threshold, then I(t) would

contain only those choices that can be replicated at t because they come from some preceding

period which environment is similar enough. Then, by definition of a DD process CC and IC must

be satisfied.

Sufficiency: Suppose that D is rich and satisfies CC and IC. We prove that D can be represented

as if generated by a DD process by steps. First we characterize the preference relation, then we

characterize the similarity function and similarity threshold and finally we show that the preference

relation and the binary similarity function defined by the combination of similarity function and

similarity threshold are unique.

As a first step, let P be a revealed preference relation defined as follows. For any D ∈ D, let

xPy if and only if, for some t ∈ D such that I(t) = ∅ and At = {x, y}, x = at. It is easy to see

that CC implies that P is irreflexive and asymmetric. Furthermore, richness of D implies that

the relation is also complete. To see that P is transitive, suppose that xPy, yPz but zPx for

some x, y, z ∈ X. By D being rich, for some D ∈ D there exists an observation t ∈ D such that

x, y, z 6= as for s < t and At = {x, y, z}. Clearly, given that x, y and z have never been chosen

before, I(t) = ∅. W.l.o.g. suppose that at = x. By zPx we know that z = at′ for some t′ ∈ D′ ∈ D
such that At′ = {x, z} and I(t′) = ∅. But then, by CC we cannot have at = x and so we reached

a contradiction. Hence P must be transitive. Let P =�.

As a second step we need to characterize the similarity threshold α and the similarity function

σ. Let α = 0 and the similarity function be as follows. For any e ∈ E:

• σ(e, e′) = 1 whenever e′ ∈ S(e).

• σ(e, e′) = 0 whenever e′ /∈ S(e).

The third requirement of a rich dataset assures that if e′ /∈ S(e) then no inversion of preferences

is observed due to replication of behavior associated with e′ when e is the reference environment.

We now show that constructing the preference relation and the similarity function in this way

allows to explain all choices. In fact, the definition of the similarity function and threshold implies

that any observation t such that I(t) = ∅ must be explained as the outcome of maximization of

preferences and any other observation t′ such that I(t′) 6= ∅ must be the outcome of replication

of past similar behavior. To analyze the first point, take any observation t such that I(t) = ∅.
Suppose that x maximizes � in the menu At, but y = at for some t ∈ D ∈ D and y 6= x. By

definition of P , x being the maximal element in At implies that for any y ∈ At \ {x}, there exists
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t′ ∈ D′ ∈ D such that At′ = {x, y} and at′ = x. Thus, by CC, we cannot have at = y and so

we reached a contradiction. Thus, we can identify the preference relation with P . Regarding the

second point, take any observation t′ such that I(t′) 6= ∅. Then, there is some s < t′ such that

as ∈ At′ and σ(et′ , es) = 1 > α and then IC assures that the choice in t′ is the same than the choice

in one of such past problems as a DD process would require.

Finally, we need to show that the preference relation and the binary similarity function are

uniquely identified. This is equivalent to show that P and S(e) are uniquely determined. First,

suppose that we can determine two different relations P and P ′. This implies that there exist some

x, y ∈ X such that xPy and yP ′x. Given that by richness P andP ′ must be complete, the previous

binary relations imply that there are two observations t and t′ such that I(t) = ∅ and At = {x, y},
x = at and I(t′) = ∅ and At′ = {x, y}, y = at′ which contradicts CC, so P is unique. Second,

suppose that for some e ∈ E, S(e) is not uniquely determined. That is, suppose we can determine

two different sets S(e) and S ′(e). This implies that there is an e′ ∈ E such that e′ ∈ S(e) and

e′ /∈ S ′(e). By definition of S(e) this is not possible. In fact, e′ ∈ S(e), given richness, can only

imply that there are two alternatives x, y ∈ X such that xPy and that there is some observation

t where x, y 6= as for s < t − 1 and t − 1 = {{y}, e′, y} and t = {{x, y}, e, y}, then e′ must be in

S ′(e) too.

Proof of Proposition 3. Given Proposition 2, we just need to show the following:

1. If t is generated by S2 then it is contained in DN .

2. If t is generated by S1 then it is contained in DC .

3. If x � y then xR(DN)y.

We start with point 3. Notice that, by m-richness, for any pair of alternatives x, y ∈ X there exists

a t such that x, y 6= as for t−m ≤ s < t and At = {x, y}. Thus, for any pair of alternative there

is a new observation that reveals the preferences of the DM and the result follows.

Now we analyze point 1. First notice that for any DD-m process there exists a pair of environ-

ments (e∗, e∗∗) for which there is no (e, e′) ∈ E ×E such that σ(e∗, e∗∗) < σ(e, e′) ≤ α. That is, e∗

and e∗∗ maximize the value of the similarity function among those pairs of environments that that

are considered dissimilar enough by the DM. Take x, y ∈ X. By the proof of point 3, we know that

for any pair of alternatives we can determine the preference of the DM, thus we can assume w.l.o.g.

that x � y. Then, by m-richness there exists a t such that x, y 6= as for t− 1−m ≤ s < t− 1 and

At−1 = {y}, et−1 = e∗∗, At = {x, y} and et = e∗. Given σ(e∗, e∗∗) ≤ α, it must be at = x making t

a new observation and so t ∈ DN . Hence, given that only behavior in t− 1 could be replicated in

t, we must have f(t) = σ(e∗, e∗∗) and so, by definition, for any observation s generated by S2 we

must have f(s|as) ≤ f(t) = σ(e∗, e∗∗). Thus, all S2 observations are linked to t, and hence any S2

observation must be in DN . By a dual argument point 2 can be shown to be valid. This concludes

the proof.
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Proof of Proposition 4. First we show that any observation t linked to a setO of S2 observations

must be generated by S2 too. In fact, notice that for any s ∈ O we know that σ(es, e
′) ≤ α for

all (es, e
′) ∈ F (s). Then, given t is linked to O we know that for any (et, e) ∈ F (t|at) there exists

s ∈ O such that (es, e
′) � (et, e), for some (es, e

′) ∈ F (s). Now, given the definition of F (t|at)
this implies that σ(et, ew) ≤ α for all w < t such that aw = at and the result follows. Then,

by Proposition 1 we know that new observations are generated by S2 and applying the previous

reasoning iteratively it is shown that DN̂ must contain only S2 observations.

As a second step, we show that any observation s to which an observation t generated by S1

is linked, must be generated by S1 too. Given t is generated by S1 it means that there exists a

w < t such that σ(et, ew) > α and aw = at. Then, either (et, ew) ∈ F (t|at) or (et, ew) /∈ F (t|at).

• Let (et, ew) ∈ F (t|at). Then, given t is linked to s, there exists a pair (es, e
′) ∈ F (s) such

that (es, e
′) � (et, ew). This implies σ(es, e

′) ≥ σ(et, ew) > α, and the result follows.

• Let (et, ew) /∈ F (t|at). Then, there exists a w′ < t such that (et, ew′) � (et, ew) and (et, ew′) ∈
F (t|at). This implies that σ(et, ew′) > σ(et, ew) > α. Then, given t is linked to s we know

that for all (et, e) ∈ F (t|at), there exists a (es, e
′) ∈ F (s) such that (es, e

′) � (et, e). In

particular, there exists a (es, e
′) ∈ F (s) such that (es, e

′) � (et, ew′). This implies σ(es, e
′) ≥

σ(et, ew′) > α, and the result follows.

Then, given that cloned observations are generated by S1, we can apply the previous reasoning

iteratively to show that DĈ must contain only S1 observations.

Finally, by a reasoning similar to the one developed in the proof of Proposition 1, given all

observations in DN̂ must be generated by S2, R(DN̂) reveals the preference of the DM.

Proof of Theorem 4. Necessity: Suppose that the sequence {(At, et, at)}Tt=1 is generated by a

DD process. Then it satisfies DN̂ -Consistency given that, according to Proposition 4, DN̂ contains

only S2 observations and � is a linear order.

Sufficiency: Suppose that the sequence {(At, et, at)}Tt=1 satisfies DN̂ -Consistency. We need to

show that it can be explained as if generated by a DD process. Notice that DN̂ -Consistency

implies that the revealed preference relation defined over DN̂ , i.e. R(DN̂), is asymmetric. Thus,

by standard mathematical results, we can find a transitive completion of R(DN̂), call it �. By

construction, all decisions in DN̂ can be seen as the result of maximizing � over the corresponding

menu.

We now define σ. We first complete �. Notice that by construction of DN̂ , for all t /∈ DN̂

there exists a pair (et, e) ∈ F (t|at) such that there is no s ∈ DN̂ for which (es, e
′) � (et, e), for

some (es, e
′) ∈ F (s). That is, for all observations not in DN̂ there exists a pair of environments

that is not dominated by any pair of environments of observations in DN̂ , a pair that we call

undominated. Then, let �′ be the following reflexive binary relation. For any undominated pair

(et, e) ∈ F (t|at) with t /∈ DN̂ , let for all s ∈ DN̂ and for all (es, e
′) ∈ F (s), (et, e) �′ (es, e

′) and

not (es, e
′) �′ (et, e). Let �′′ be the transitive closure of � ∪ �′. Notice that �′′ is an extension
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of � that preserves its reflexivity and transitivity. Thus we can find a completion �∗ of �′′ and a

similarity function σ : E × E → [0, 1] that represents �∗.
Finally, we can define α. For any observation t, let f ∗(t) be as follows:

f ∗(t) = max
s<t,as∈At

σ(et, es),

Then let α = maxt∈DN̂ f ∗(t). Notice that by construction of σ for all t /∈ DN̂ there exists a pair of

environments (et, e) ∈ F (t|at) such that for all s ∈ DN̂ , σ(et, e) > f ∗(s), hence σ(et, e) > α. So,

for every observation not in DN̂ we can find a preceding observation to imitate.

Thus, we can represent the choices as if generated by an individual with preference relation �,

similarity function σ and similarity threshold α.

A.3 Estimation of the Similarity Function

The similarity function is a key component of a DD process and for the sake of exposition it is

assumed to be known in the main part of the paper. Nonetheless, we discuss here how to identify

it by studying the choice behavior of a group of individuals sharing it.

Consider a continuous population of individuals sharing the similarity function σ, with a con-

tinuous and independent distribution of the similarity threshold over [0, 1]. Sequences of decision

problems and preferences are independently distributed.

Consider a pair of alternatives x, y ∈ X such that each of them is considered better than the

other for a non-negligible part of the population. For every pair of environments e, e′ ∈ E, assume

there exists a non-negligible subpopulation for which there is an observation t as follows:

• x 6∈ At, At+1 = At ∪ {x} and no alternative in At+1 was chosen before t,

• et = e′ and et+1 = e and

• at = y.

The main result of this section shows that we can compare the similarity of two different pairs

of environments by considering the corresponding aforementioned subpopulations and sampling

them. Formally, denote by ν(e, e′) the average relative number of randomly sampled individuals

sticking to y at t + 1. That is, for any pair of environments (e, e′) we take a sample of finite

magnitude n from the aforementioned subpopulations and we compute the average of the relative

number of individuals that stick to y in such sample. Such average is ν(e, e′).

Proposition A1 (Eliciting the Similarity) For every two pairs of environments (e, e′) and

(g, g′), Pr(ν(e, e′) ≥ ν(g, g′)|σ(g, g′) > σ(e, e′))
p→ 0. That is, the probability of having ν(e, e′) ≥

ν(g, g′) when σ(g, g′) > σ(e, e′) probabilistically converges to zero.
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Proof. Let µ(e, e′) be the relative number of individuals that would choose y in the whole non-

negligible subpopulation from which the sample defining ν(e, e′) is taken. First, notice that when-

ever µ(e, e′) ≥ µ(g, g′) it implies that environments (e, e′) are more similar than environments

(g, g′). In fact, given that preferences and decision problems are independently distributed in the

population, any of the subpopulations we consider is representative of the whole population. Then,

given that in the whole population no alternative is preferred over the other by every individual,

if the actual relative numbers are different it implies that one pair of environments is more similar

than the other. Moreover, given α is continuously and independently distributed in the population

we can compare any pair of environments with any other pair and find how they are related by

the similarity function. That is, for any e, e′, g, g′ ∈ E such that σ(e, e′) < σ(g, g′) it must be

µ(e, e′) < µ(g, g′) given that there always exists a non-negligible part of the whole population with

similarity threshold α in the interval [σ(e, e′), σ(g, g′)) and again, the subpopulations are repre-

sentative. Then, notice that given that every subpopulation is infinite, any sample that defines

ν(e, e′) for any e, e′ ∈ E can be considered independent. Thus, the law of large numbers applies in

this context and we get,

Pr(|ν(e, e′)− µ(e, e′)| > ε)
p→ 0,

and the result follows.

Given our assumptions, each sample we take to calculate ν(e, e′) is an independent estimation

of the relative number of individuals that sticks to y. Thus, we are getting a consistent estimate

of the relative number of individuals that would stick to y in the whole subpopulation. Then,

comparing the average relative number of individuals that stick to alternative y in t + 1 for dif-

ferent pairs of environments, gives the required information on the similarity function. The main

intuition of Proposition A1 is the following. There are two reasons that force the average relative

number of people sticking to y with the pair of environments (e, e′) to be bigger than the average

relative number of people sticking to y with another pair of environments (g, g′). First, the pair of

environments (e, e′) is more similar than the pair of environments (g, g′). This implies that S1 is

active in t+1 for a larger number of individuals on average, which leads to replication of the choice

in t, i.e. alternative y.33 Second, y is preferred to x by a larger number of sampled people among

those using S2 with the pair of environments (e, e′). The law of large numbers makes the second

concern disappear as the number of samples taken to measure ν grows, revealing the similarity of

different pairs of environments.

33Notice that our assumptions imply that only the choice in t can be replicated if S1 is active.
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