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Introduction and Summary

4D gauge theory ( U(N) and
∏

a U(Na) groups ) problems –
counting and correlators of local operators in the free field limit
– theories associated with Quivers (directed graphs) -

2D gauge theory (with Sn gauge groups ) - topological lattice
gauge theory, with defect observables associated with
subgroups

∏
i Sni - on Riemann surface obtained by thickening

the quiver. n is related to the dimension of the local operators.
For a given 4D theory, we need all n.

1D Quiver diagrammatics - quiver decorated with Sn data - is
by itself a powerful tool. Finite N information.



OUTLINE

Part 1 : 4D theories - examples and motivations
Introduce some examples of the 4D gauge theories and
motivate the study of these local operators.

- AdS/CFT and branes in dual AdS background.

- SUSY gauge theories, chiral ring

- Will work in the free limit - e.g. g2
YM = 0 in N = 4 SYM. More

generally, chiral ring with superpotential switched off.



Motivations for studying the free fixed point :

- non-renormalization theorems for some correlators

- a stringy regime of AdS/CFT - supergravity is not valid. Dual
geometry should be constructed from the combinatoric data of
the gauge theory.

- A point of enhanced symmetry and enhanced chiral ring.

- Contains information about the weakly coupled chiral ring -
which is obtained by imposing super-potential relations on the
space of gauge invariants ; or for more detailed information,
solving a Hamiltonian acting on the ring of gauge invariants.



OUTLINE

Part 2 : 2d lattice TFT - Symmetric groups, subgroups,
defects.

I Introduce the 2d lattice gauge theories and defect
observables.

I 2d TFTs : counting and correlators of the 4d CFTs at large
N.

I Generating functions for the counting at large N.



OUTLINE

Part 3 : Quiver - as 1D calculator

I Finite N counting with decorated Quiver.

I Orthogonal basis of operators and Quiver characters.

I Chiral ring structure constants.



Part 1 : Examples
Simplest theory of interest is U(N) gauge theory, with N = 4
supersymmetry. As an N = 1 theory, it has 3 chiral multiplets in
the adjoint representation (→ 3 complex matrix scalars )
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Dual to string theory on AdS5 × S5 by AdS/CFT. Half-BPS
(maximally super-symmetric sector) reduces to a single arrow –
Contains dynamics of gravitons and super-symmetric branes
(giant gravitons).



Part 1 : 4D theories

ADS5 × S5 ↔ CFT : N = 4 SYM U(N) gauge
group on R3,1

Radial quantization in (euclidean ) CFT side :

Time is radius
Energy is scaling dimension ∆.

Local operators e.g. tr(F 2),TrX n
a

correspond to quantum states.
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Part 1 : 4D theories

Half-BPS states are built from matrix Z = X1 + iX2. Has ∆ = 1.
Generate short representations of supersymmetry, which
respect powerful non-renormalization theorems.

Holomorphic gauge invariant states :

∆ = 1 : tr Z

∆ = 2 : tr Z2, tr Ztr Z

∆ = 3 : tr Z3, tr Z2tr Z, (tr Z)3

For ∆ = n, number of states is

p(n) = number of partitions of n



Part 1 : 4D theories

The number p(n) is also the number of irreps of Sn and the
number of conjugacy lasses.

To see Sn – Any observable built from n copies of Z can be
constructed by using a permutation.

Oσ = Z i1
iσ(1)

Z i2
iσ(2)
· · ·Z in

iσ(n)

All indices contracted, but lower can be a permutation of upper
indices.

Oσ = Z i1
j1

Z i2
j2
· · ·Z in

jn δj1
iσ(1)
· · · δjn

iσ(n)
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Part 1 : 4D theories
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Part 1 : 4D theories

Conjugacy classes are Cycle structures
For n = 3, permutations have 3 possible cycle structures.

(123), (132)

(12)(3), (13)(2), (23)(1)

(1)(2)(3)

Hence 3 operators we saw.



Part 1 : 4D theories

More generally - in the eighth-BPS sector - we are interested in
classification/correlators of the local operators made from
X ,Y ,Z .

Viewed as an N = 1 theory, this sector forms the chiral ring.

Away from the free limit, we can treat the X ,Y ,Z as commuting
matrices, and get a spectrum of local operators in
correspondence with functions on SN(C3) - the symmetric
product.



Part 1 : 4D theories

This is expected since N = 4 SYM arises from coincident
3-branes with a transverse C3.

At zero coupling, we cannot treat the X ,Y ,Z as commuting,
and the chiral ring - or spectrum of eight-BPS operators - is
enhanced compared to nonzero coupling.



Part 1 : 4D theories
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Part 1 : 4D theories

Conifold Theory :
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Specify n1,n2,m1,m2, numbers of A1,A2,B1,B2, and want to
count holomorphic gauge invariants.



Part 1 : 4D theories
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Part 1 : 4D theories

Having specified (m1,m2,n1,n2) we want to know the number
of invariants under the U(N)× U(N) action N(m1,m2,n1,n2)

Counting is simpler when m1 + m2 = n1 + n2 ≤ N . In that case,
we can get a nice generating function - via 2d TFT.

Also want to know about the matrix of 2-point functions :

< Oα(A1,A2,B1,B2)O†β(A1,A2,B1,B2) >

∼
Mαβ

|x1 − x2|2(n1+n2+m1+m2)

The quiver diagrammatic methods produce a diagonal basis for
this matrix.



Part 1 : 4D theories

C3/Z2
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Part 2 : 2D TFT from lattice gauge theory, 4D
large N, generating functions

Edges→ group elements σij ∈ G = Sn

σP : product of group elements around
plaquette.

Partition function Z :

Z =
∑
{σij}

∏
P

Z (σP)

Plaquette weight invariant under conjugation e.g
trace in some representation.



Part 2 : 2d TFTs .. gen. functions

Take the group G = Sn for some integer n.

Symmetric Group of n! rearrangements of {1,2, · · · ,n}.

Plaquette action :

ZP(σP) = δ(σP)
δ(σ) = 1 if σ = 1

= 0 otherwise

Partition function :

Z =
1

n!V

∑
{σij}

∏
P

ZP(σP)



Part 2 : 2d TFTs ... gen. functions

This simple action is topological. Partition function is invariant
under refinement of the lattice.
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Figure: RG Invariance of action



Part 2 : 2d TFTs ... gen. functions

The partition function – for a genus G surface– is

ZG =
1
n!

∑
s1,t2,··· ,sG,tG∈Sn

δ(s1t1s−1
1 t−1

1 s2t2s−1
2 t−1

2 · · · sGtGs−1
G t−1

G )04 April 2013
14:18
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Part 2 : 2d TFTs ... gen. functions

The delta-function can also be expanded in terms of characters
of Sn in irreps. There is one irreducible rep for each Young
diagram with n boxes. e.g for S8 we can have

Label these R. For each partition of n

n = p1 + 2p2 + · · ·+ npn

there is a Young diagram.
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Part 2 : 2d TFTs .... gen functions

The delta function is a class function :

δ(σ) =
∑
R`n

dRχR(σ)

n!

The partition function

ZG =
∑
R`n

(
dR

n!
)2−2G



Part 2 : 2d TFTs ..... gen functions

Fix a circle on the surface, and constrain the permutation
associated with it to live in a subgroup.

Z (T 2,Sn1 × Sn2 ; Sn1+n2) =
1

n1!n2!

∑
γ∈Sn1×Sn2

∑
σ∈Sn

δ(γσγ−1σ−1)

This kind of Fourier transformation on the group,in refined form,
will play a role in subsequent developments.



Part 2 : 2d TFTs .... gen functions
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Part 2 : 2d TFTs ....4D ... gen functions

Back to 4D
Start with simplest quiver. One-node, One edge. Gauge
invariant operators Oσ with equivalence

Oσ = Oγσγ−1



Part 2 : 2d TFTs .... gen functions

The set of Oσ’s is acted on by γ. Burnside Lemma gives
number of orbits as the average of the number of fixed
points of the action.

number of orbits = 1
n! number of fixed points of the γ

action on the set of σ

Hence number of distinct operators

p(n) =
1
n!

∑
σ,γ∈Sn

δ(γσγ−1σ−1)

= ZTFT2(T 2,Sn)



Part 2 : 2d TFTs ....4D ... gen functions

In the case of C3, we specify n1,n2,n3, the numbers of X ,Y ,Z
and we can construct any observable Oσ(X ,Y ,Z ) by using a
permutation σ ∈ Sn, where n = n1 + n2 + n3.

There are equivalences

σ ∼ γσγ−1

where γ ∈ H ≡ Sn1 × Sn2 × Sn3 ⊂ Sn.

Again using Burnside Lemma

N(n1,n2,n3) =
1

n1!n2!n3!

∑
γ∈H

∑
σ∈Sn

δ(γσγ−1σ−1)

= ZTFT2(T 2,H,Sn)



Part 2 : 2d TFTs ....4D ... gen functions
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Part 2 : 2d TFTs ....4D ... gen functions

In terms of delta functions

Nconifold (n1,n2,m1,m2) =
∑
σ1∈Sn

∑
σ2∈Sn

∑
γ1∈Sn1×Sn2

∑
γ2∈Sm1×m2

δ(γ1σ1γ
−1
2 σ−1

1 )δ(γ2σ2γ
−1
1 σ−1

2 )

One delta function for each gauge group.
One permutation σa contracting the upper with lower indices for
each U(Na). Equivalences

(
∏

b

γba)σa
∏

b

γ−1
ab ∼ σa

γab is in
∏
α Snα

ab
.
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Part 2 : 2d TFTs ....4D ... gen functions

These large N formulae in terms of delta functions can be used
to derive simple generating functions - in the form of infinite
products. The form of the denominators are simply related to
the structure of the quiver - will illustrate by examples ( general
formula in 1301.1980 ).
1-node, 1-edge ( Half-BPS)

∞∏
i=1

1
(1− t i)

1-node, 3-edges (eighth-BPS)

∞∏
i=1

1
(1− t i

1 − t i
2 − t i

3)

This formula was first written in F. Dolan 2005



Part 2 : 2d TFTs ....4D ... gen functions
Conifold case

N (a1,a2,b1,b2) =
∑

n1,n2,m1,m2

N(n1,n2,m1,m2)an1
1 an2

2 bm1
1 bm2

2

=
∞∏

i=1

1
(1− ai

1bi
1 − ai

1bi
2 − ai

2bi
1 − ai

2bi
2)

This is a remarkably simple formula - obtained by converting
permutation sums, into sums over conjugacy classes, labelled
by cycles lengths i .
Even simpler - as obtained by substitution :

F (y12, y21) =
1

(1− y12y21)

N (a1,a2,b1,b2) =
∏

i

F (y21 → ai
1 + ai

2; y12 → bi
1 + bi

2)



Part 2 : 2d TFTs ....4D ... gen functions

C3/Z2 case

NC3/Z2
(a1,a2,b1,b2, c,d)

=
∞∏

i=1

1
1− ai

1bi
1 − ai

1bi
2 − ai

2bi
1 − ai

2bi
2 − c i − d i + c id i

Again there is a basic F function, F (y11, y12, y21, y22) which
gives the above after substitution

NC3/Z2
(a1,a2,b1,b2, c,d) =∏

i

F (y11 → c i , y21 → ai
1 + ai

2, y12 → bi
1 + bi

2, y22 → d i)

where

F (yab) =
1

(1− y11 − y22 − y12y21 + y11y22)



Part 2 : 2d TFTs ....4D ... gen functions

In general the F function is

F =
1

Det(1− Y )

and there is a simple substitution to get the desired trace
generatin gfunction

N (xab;α) =
∏

i

F (yab →
∑
α

x i
ab;α)



Part 3 : Quiver as Calculators - Finite N counting and
orthogonal bases
The above formulae are valid when N is sufficiently large. The
finite N counting formulae can be written in terms of Littlewood
Richardson coefficients - the form of the expression can be
read off from the quiver diagram.
for the 1-node, 1-edge quiver

N(n,N) = pN(n) =
∑
R`n

l(R)≤N

1

giant graviton physics in AdS/CFT - stringy exclusion principle
For the 1-node, 3-edge quiver

N(n1,n2,n3,N) =
∑
r1`n1

∑
r2`n2

∑
r3`n3

∑
R`n

l(R)≤N

g(r1, r2, r3; R)2



Part : Quivers as calculators, finite N, orthogonality
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Part 3 : Quivers as calculators, finite N, orthogonality

For conifold :

N(n1,n2,m1,m2) =
∑
R1`n

l(R1)≤N

∑
R2`n

l(R2)≤N

∑
r1`n1

∑
r2`n2

∑
s1`m1

∑
s2`m2

g(r1, r2,R1)g(r1, r2,R2)g(s1, s2,R1)g(s1, s2,R2)

n = n1 + n2 = m1 + m2.



Part 3 : Quivers as calculators, finite N, orthogonality

For the conifold
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Part 3 : Quivers as calculators, finite N, orthogonality

For the C3/Z2 case
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Part 3 b : Orthogonal bases

Back to 1-node, 1-edge quiver :
Using Wick’s theorem and the basic 2-point function

< Z i
j (Z †)k

l >= δk
j δ

i
l

we can calculate the correlators

< Oσ1O
†
σ2
>

which give an inner product on the space of local operators.



Part 3 : Quivers as calculators, finite N, orthogonality

This inner product is diagonalized by

OR =
∑
σ

χR(σ)Oσ

< ORO†S >= fRδRS

Proof uses orthogonality properties of characters e.g.

1
n!

∑
σ

χR(σ)χS(σ) = δRS

This diagonalization was done and used to propose a map between Young diagram operators and giant gravitons in
AdS/CFT
Corley, Jevicki, Ramgoolam 2001
extended to half-BPS sugra backgrounds Lin, Lunin, Maldacena 2004
Recent tests (2011-2012) using DBI in AdS × S - Bissi ,Kristkjanssen, Young, Zoubos ; Caputa, de Mello Koch,
Zoubos ; Hai Lin



Part 3 : Quivers as calculators, finite N, orthogonality

For general quivers, the χR(σ) are replaced by what we called
Quiver characters, which are obtained by inserting
permutations in the quiver diagram, interpreting the resulting in
terms of DR

ij (σ) and branching coefficients BR→r1,r2··· ;ν
i,i1,i2···

The quiver characters have analogous orthogonality properties
to ordinary Sn characters. And lead to orthogonal multi-matrix
operators for quiver theories.
For the multi-edge single node quiver, this was understood in 2007/2008,
Kimura, Ramgoolam
Brown,Heslop,Ramgoolam
Collins, De Mello Koch, Bhattacharyya, Stephanou
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The LR coefficients g(R1,R2,R3), with
R1 ` n1,R2 ` n2,R3 ` n1 + n2, give the multiplicity of R1 ⊗R2 of
the subgroup Sn1 ×Sn2 in the reduction of the irrep R3 of Sn1+n2 .

V
(Sn1+n2 )

R3
=
⊕

R1,R2

VR1 ⊗ VR2 ⊗ V R1,R2
R3

The multiplicity space can be given an orthogonal basis,
labelled by an index ν which takes values 1 ≤ ν ≤ g(R1,R2,R3)
Correspondingly there are branching coefficients

|R, i >= |R1,R2, ν; i1, i2 >< R1,R2, ν; i1, i2|R, i >

These branching coefficients are associated with vertices of the
diagram, and DR

ij (σ) to the lines. This gives a quantity labelled

by σ1, σ2 and the ~R and ~ν labels. ( no state labels - all
contracted ).



These quiver characters have the invariances we saw before

χQ
L (σa) = χQ

L

(∏
b

γba σa
∏

b

γ−1
ba

)

and obey orthogonality relations e.g

∑
σa

χQ
L1

(σa)χQ
L2

(σa) ∼ δL1,L2

The operators

OL(Xab;α) =
∑
σa

χQ
L (σa)Oσa(Xab;α)

are orthogonal in the free field inner product - obtained by Wick
contraction rule from

〈Xa1b1;α1X †a2,b2;α2
〉 = δa1a2δb1b2δα1,α2



Part 4 : Comments and future directions.

I The 2D TFT also gives a description of the correlators at
large N.

I Chiral ring structure constants - selection rules - all Young
diagrams combine according to LR rule. Multiplicity indices
more complicated - but the structure can be captured by a
diagram - obtained by cutting and gluing the diagrams for
the 3 operators.

I There are equivalences - in some cases the same 4D
observable can be given in different ways in the TFT2. A
complete characterization of the equivalences would be
good - categorical description of the TFT2 + defects.
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I Hamiltonians on the gauge invariants e.g 2-matrix problem

H2 = tr [X ,Y ][X̌ , Y̌ ]

In planar limit- Heisenberg spin chain. At finite N brane
arguments imply that the BPS states of this Hamiltonian
connect with SN(C2), i.e N bosons on C2.

I There should be analogous statements for general quivers.
The Hamiltonians are not known - from first principle. But -
conceivably, could be determined by requiring the correct
space of ground states - SN(X ); integrability at large N +
knowledge of the space of marginal operators (comment of
Alessandro) .....

I BPS states (null eigenstates of H2 ) can be described as
symm-traces + 1/N corrections using permutation groups.
( papers of Vaman, Verlinde (2002) ; Brown, Heslop, Ramgoolam (2007) , Brown (2010 ) Pasukonis,

Ramgoolam ( 2010 )

Ω−1P



I A complete orthogonal finite N description is missing -
although there are partial results using Brauer algebras (
Kimmura, Ramgoolam - Branes, anti-Branes and Brauer algebras (2007) ; Kimura - Quarter BPS from

Brauer algebra ( 2010) ).
I “Permutation TFT2” formulations of 4D QFT combinatorics

away from zero coupling also relevant to integrability in
giant graviton dynamics - where we expand around a large
Yong diagram χR(X ) and study the Y -imputities using the
χR

r1,r2;ν1,ν2
restricted Schur basis for 2-matrix system.

Giant graviton oscillators - Giatanagas, de Mello Koch , Dessein, Mathwin (2011)

A double coset ansatz for integrability in AdS/CFT - de Mello Koch, Ramgoolam (2012)

I Permutation TFT2 - a unifying description of a vareity of
QFT combinatorics of gauge invariant operators
...interesting to explore further ...


