4D Quiver Gauge theory combinatorics and 2D TFTs

Sanjaye Ramgoolam

Queen Mary, University of London
\section*{20 August 2014, Surrey New trends in Quantum integrability}

```
"Quivers as Calculators : Counting, correlators and Riemann surfaces," arxiv:1301.1980,
J. Pasukonis, S. Ramgoolam
"Quivers, fundamentals, ... " P. Mattioli, S. Ramgoolam ( to appear )
```


Introduction and Summary

4D gauge theory ($U(N)$ and $\prod_{a} U\left(N_{a}\right)$ groups) problems counting and correlators of local operators in the free field limit - theories associated with Quivers (directed graphs) -

2D gauge theory (with S_{n} gauge groups) - topological lattice gauge theory, with defect observables associated with subgroups $\prod_{i} S_{n_{i}}$ - on Riemann surface obtained by thickening the quiver. n is related to the dimension of the local operators.
For a given 4D theory, we need all n.

1D Quiver diagrammatics - quiver decorated with S_{n} data - is by itself a powerful tool. Finite N information.

OUTLINE

Part 1: 4D theories - examples and motivations Introduce some examples of the 4D gauge theories and motivate the study of these local operators.

- AdS/CFT and branes in dual AdS background.
- SUSY gauge theories, chiral ring
- Will work in the free limit - e.g. $g_{Y M}^{2}=0$ in $N=4$ SYM. More generally, chiral ring with superpotential switched off.

Motivations for studying the free fixed point :

- non-renormalization theorems for some correlators
- a stringy regime of AdS/CFT - supergravity is not valid. Dual geometry should be constructed from the combinatoric data of the gauge theory.
- A point of enhanced symmetry and enhanced chiral ring.
- Contains information about the weakly coupled chiral ring which is obtained by imposing super-potential relations on the space of gauge invariants; or for more detailed information, solving a Hamiltonian acting on the ring of gauge invariants.

OUTLINE

Part 2 : 2d lattice TFT - Symmetric groups, subgroups, defects.

- Introduce the 2d lattice gauge theories and defect observables.
- 2d TFTs : counting and correlators of the 4d CFTs at large N .
- Generating functions for the counting at large N.

OUTLINE

Part 3 : Quiver - as 1D calculator

- Finite N counting with decorated Quiver.
- Orthogonal basis of operators and Quiver characters.
- Chiral ring structure constants.

Part 1 : Examples

Simplest theory of interest is $U(N)$ gauge theory, with $\mathcal{N}=4$ supersymmetry. As an $\mathcal{N}=1$ theory, it has 3 chiral multiplets in the adjoint representation ($\rightarrow 3$ complex matrix scalars)

Dual to string theory on $A d S_{5} \times S^{5}$ by AdS/CFT. Half-BPS (maximally super-symmetric sector) reduces to a single arrow Contains dynamics of gravitons and super-symmetric branes (giant gravitons).

Part 1: 4D theories

$A D S_{5} \times S^{5} \leftrightarrow$ CFT : $N=4$ SYM $U(N)$ gauge group on $R^{3,1}$

Radial quantization in (euclidean) CFT side :

Part 1:4D theories

$A D S_{5} \times S^{5} \leftrightarrow$ CFT : $N=4$ SYM $U(N)$ gauge group on $R^{3,1}$

Radial quantization in (euclidean) CFT side :
Time is radius
Energy is scaling dimension Δ.
Local operators e.g. $\operatorname{tr}\left(F^{2}\right), \operatorname{Tr} X_{a}^{n}$ correspond to quantum states.

Part 1: 4D theories

Half-BPS states are built from matrix $Z=X_{1}+i X_{2}$. Has $\Delta=1$. Generate short representations of supersymmetry, which respect powerful non-renormalization theorems.

Holomorphic gauge invariant states:
$\Delta=1 \quad: \quad \operatorname{tr} \mathrm{Z}$
$\Delta=2 \quad: \quad \operatorname{tr} Z^{2}, \operatorname{tr} Z \operatorname{tr} Z$
$\Delta=3 \quad: \quad \operatorname{tr} Z^{3}, \operatorname{tr} Z^{2} \operatorname{tr} Z,(\operatorname{tr} Z)^{3}$
For $\Delta=n$, number of states is
$p(n)=$ number of partitions of n

Part 1: 4D theories

The number $p(n)$ is also the number of irreps of S_{n} and the number of conjugacy lasses.

Part 1: 4D theories

The number $p(n)$ is also the number of irreps of S_{n} and the number of conjugacy lasses.

To see S_{n} - Any observable built from n copies of Z can be constructed by using a permutation.

$$
\mathcal{O}_{\sigma}=Z_{i_{\sigma(1)}}^{i_{1}} Z_{i_{\sigma(2)}}^{i_{2}} \cdots Z_{i_{\sigma(n)}}^{i_{n}}
$$

All indices contracted, but lower can be a permutation of upper indices.

$$
\mathcal{O}_{\sigma}=Z_{j_{1}}^{i_{1}} Z_{j_{2}}^{i_{2}} \cdots Z_{j_{n}}^{i_{n}} \quad \delta_{i_{\sigma(1)}}^{j_{1}} \cdots \delta_{i_{\sigma(n)}}^{j_{n}}
$$

Part 1: 4D theories

Part 1: 4D theories

Conjugacy classes are Cycle structures
For $n=3$, permutations have 3 possible cycle structures.
$(123),(132)$
$(12)(3),(13)(2),(23)(1)$
$(1)(2)(3)$

Hence 3 operators we saw.

Part 1: 4D theories

More generally - in the eighth-BPS sector - we are interested in classification/correlators of the local operators made from X, Y, Z.

Viewed as an $\mathcal{N}=1$ theory, this sector forms the chiral ring.
Away from the free limit, we can treat the X, Y, Z as commuting matrices, and get a spectrum of local operators in correspondence with functions on $S^{N}\left(\mathbb{C}^{3}\right)$ - the symmetric product.

Part 1:4D theories

This is expected since $\mathcal{N}=4$ SYM arises from coincident 3-branes with a transverse \mathbb{C}^{3}.

At zero coupling, we cannot treat the X, Y, Z as commuting, and the chiral ring - or spectrum of eight-BPS operators - is enhanced compared to nonzero coupling.

Part 1: 4D theories

Part 1: 4D theories

Conifold Theory :

Specify $n_{1}, n_{2}, m_{1}, m_{2}$, numbers of $A_{1}, A_{2}, B_{1}, B_{2}$, and want to count holomorphic gauge invariants.

Part 1: 4D theories

$$
=\theta_{\left(\sigma_{1}, \sigma_{2}\right)} \sim \theta_{\left(\gamma_{1} \sigma_{1} \gamma_{2}^{-1}, \gamma_{2} \sigma_{2}^{-\gamma_{1}^{\prime}}\right)}
$$

Part 1: 4D theories

Having specified ($m_{1}, m_{2}, n_{1}, n_{2}$) we want to know the number of invariants under the $U(N) \times U(N)$ action $N\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$

Counting is simpler when $m_{1}+m_{2}=n_{1}+n_{2} \leq N$. In that case, we can get a nice generating function - via 2d TFT.

Also want to know about the matrix of 2-point functions :

$$
\begin{aligned}
& <\mathcal{O}_{\alpha}\left(A_{1}, A_{2}, B_{1}, B_{2}\right) \mathcal{O}_{\beta}^{\dagger}\left(A_{1}, A_{2}, B_{1}, B_{2}\right)> \\
& \sim \frac{M_{\alpha \beta}}{\left|x_{1}-x_{2}\right|^{2\left(n_{1}+n_{2}+m_{1}+m_{2}\right)}}
\end{aligned}
$$

The quiver diagrammatic methods produce a diagonal basis for this matrix.

Part 1: 4D theories

$$
\mathbb{C}^{3} / Z_{2}
$$

Part 2 : 2D TFT from lattice gauge theory, 4D large N, generating functions

Edges \rightarrow group elements $\sigma_{i j} \in G=S_{n}$
σ_{P} : product of group elements around plaquette.

Partition function Z :

$$
Z=\sum_{\left\{\sigma_{i j}\right\}} \prod_{P} Z\left(\sigma_{P}\right)
$$

Plaquette weight invariant under conjugation e.g trace in some representation.

Part 2 : 2d TFTs .. gen. functions

Take the group $G=S_{n}$ for some integer n.
Symmetric Group of $n!$ rearrangements of $\{1,2, \cdots, n\}$.

Plaquette action :

$$
\begin{aligned}
Z_{P}\left(\sigma_{P}\right) & =\delta\left(\sigma_{P}\right) \\
\delta(\sigma) & =1 \text { if } \sigma=1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Partition function :

$$
Z=\frac{1}{n!^{V}} \sum_{\left\{\sigma_{i j}\right\}} \prod_{P} Z_{P}\left(\sigma_{P}\right)
$$

Part 2 : Rd TETs ... gen. functions
This simple action is topological. Partition function is invariant under refinement of the lattice.

04 April 2013
13:29

$$
\sum_{\sigma_{3}} \delta\left(\sigma_{1} \sigma_{3}\right) \delta\left(\sigma_{3}^{-1} \sigma_{2}\right) \rightarrow \delta\left(\sigma_{1} \sigma_{2}\right)
$$

integrating out an edge \rightarrow Plaque ne weight of new plaquite

Part 2 : ad TFTs ... gen. functions
The partition function - for a genus G surface- is

$$
Z_{G}=\frac{1}{n!} \sum_{s_{1}, t_{2}, \cdots, s_{G}, t_{G} \in S_{n}} \delta\left(s_{1} t_{1} s_{1}^{-1} t_{1}^{-1} s_{2} t_{2} s_{2}^{-1} t_{2}^{-1} \cdots s_{G} t_{G} s_{G}^{-1} t_{G}^{-1}\right)
$$

$$
G=1
$$

$$
\begin{array}{rll}
a \rightarrow 5_{1} & \sigma_{p}=s, t_{1} s_{1}^{-1} t_{1}^{-1}
\end{array}
$$

$$
G=2
$$

$$
\rightarrow \sigma_{p}=\left(s_{1} t_{1} s_{1}^{-1} t^{-1} s_{2} t_{2}^{-1} t_{2}^{-1}\right)
$$

Part 2 : 2d TFTs ... gen. functions

The delta-function can also be expanded in terms of characters of S_{n} in irreps. There is one irreducible rep for each Young diagram with n boxes. e.g for S_{8} we can have

Part 2 : 2d TFTs ... gen. functions

The delta-function can also be expanded in terms of characters of S_{n} in irreps. There is one irreducible rep for each Young diagram with n boxes. e.g for S_{8} we can have

Label these R. For each partition of n

$$
n=p_{1}+2 p_{2}+\cdots+n p_{n}
$$

there is a Young diagram.

Part 2 : 2d TFTs ... gen. functions

The delta-function can also be expanded in terms of characters of S_{n} in irreps. There is one irreducible rep for each Young diagram with n boxes. e.g for S_{8} we can have

Label these R. For each partition of n

$$
n=p_{1}+2 p_{2}+\cdots+n p_{n}
$$

there is a Young diagram.

Part 2 : 2d TFTs gen functions

The delta function is a class function :

$$
\delta(\sigma)=\sum_{R \vdash n} \frac{d_{R} \chi_{R}(\sigma)}{n!}
$$

The partition function

$$
Z_{G}=\sum_{R \vdash n}\left(\frac{d_{R}}{n!}\right)^{2-2 G}
$$

Part 2 : 2d TFTs gen functions

Fix a circle on the surface, and constrain the permutation associated with it to live in a subgroup.
$Z\left(T^{2}, S_{n_{1}} \times S_{n_{2}} ; S_{n_{1}+n_{2}}\right)=\frac{1}{n_{1}!n_{2}!} \sum_{\gamma \in S_{n_{1}} \times S_{n_{2}}} \sum_{\sigma \in S_{n}} \delta\left(\gamma \sigma \gamma^{-1} \sigma^{-1}\right)$
This kind of Fourier transformation on the group, in refined form, will play a role in subsequent developments.

Part 2 : 2d TFTs gen functions

08 September 2013
$11: 59$

subgroup-obs-torus Page 1

$$
Z\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \sim \sum_{\gamma_{1}, \gamma_{2}} \delta\left(\gamma_{1} \sigma_{1} \bar{\gamma}_{1}^{\prime} \gamma_{2} \sigma_{2} \bar{\gamma}_{2}^{\prime} \sigma_{3}\right)
$$

if constrain $\gamma_{1}, \gamma_{2}=1$ product

$$
z\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=\delta\left(\sigma_{1}, \sigma_{2} \sigma_{3}\right)
$$

Part 2 : 2d TFTs4D ... gen functions

Back to 4D
Start with simplest quiver. One-node, One edge. Gauge invariant operators \mathcal{O}_{σ} with equivalence

$$
\mathcal{O}_{\sigma}=\mathcal{O}_{\gamma \sigma \gamma^{-1}}
$$

Part 2 : 2d TFTs gen functions

The set of \mathcal{O}_{σ} 's is acted on by γ. Burnside Lemma gives number of orbits as the average of the number of fixed points of the action.
number of orbits $=\frac{1}{n!}$ number of fixed points of the γ action on the set of σ

Hence number of distinct operators

$$
\begin{aligned}
p(n) & =\frac{1}{n!} \sum_{\sigma, \gamma \in S_{n}} \delta\left(\gamma \sigma \gamma^{-1} \sigma^{-1}\right) \\
& =Z_{\text {TFT } 2}\left(T^{2}, S_{n}\right)
\end{aligned}
$$

Part 2 : 2d TFTs4D ... gen functions

In the case of \mathbb{C}^{3}, we specify n_{1}, n_{2}, n_{3}, the numbers of X, Y, Z and we can construct any observable $\mathcal{O}_{\sigma}(X, Y, Z)$ by using a permutation $\sigma \in S_{n}$, where $n=n_{1}+n_{2}+n_{3}$.
There are equivalences

$$
\sigma \sim \gamma \sigma \gamma^{-1}
$$

where $\gamma \in H \equiv S_{n_{1}} \times S_{n_{2}} \times S_{n_{3}} \subset S_{n}$.
Again using Burnside Lemma

$$
\begin{aligned}
N\left(n_{1}, n_{2}, n_{3}\right) & =\frac{1}{n_{1}!n_{2}!n_{3}!} \sum_{\gamma \in H} \sum_{\sigma \in S_{n}} \delta\left(\gamma \sigma \gamma^{-1} \sigma^{-1}\right) \\
& =Z_{T F T 2}\left(T^{2}, H, S_{n}\right)
\end{aligned}
$$

Part 2 : 2d TETs4D ... gen functions

08 September 2013
$16: 48$

$$
n=r_{1}+n_{2}
$$

$$
=m_{1}+m_{2}
$$

$$
\underbrace{H_{2}=}_{Z_{T E T_{2}}} S_{m_{m_{1}} \times S_{m_{2}}}^{\left(n_{1}, n_{2}, m_{1}, m_{2}\right)}
$$

Part 2 : 2d TFTs4D ... gen functions

In terms of delta functions

$$
\begin{aligned}
N_{\text {conifold }}\left(n_{1}, n_{2}, m_{1}, m_{2}\right) & =\sum_{\sigma_{1} \in S_{n}} \sum_{\sigma_{2} \in S_{n}} \sum_{\gamma_{1} \in S_{n_{1}} \times S_{n_{2}}} \\
& \sum_{\gamma_{2} \in S_{m_{1} \times m_{2}}} \\
& \delta\left(\gamma_{1} \sigma_{1} \gamma_{2}^{-1} \sigma_{1}^{-1}\right) \delta\left(\gamma_{2} \sigma_{2} \gamma_{1}^{-1} \sigma_{2}^{-1}\right)
\end{aligned}
$$

One delta function for each gauge group.
One permutation σ_{a} contracting the upper with lower indices for each $U\left(N_{a}\right)$. Equivalences

$$
\left(\prod_{b} \gamma_{b a}\right) \sigma_{a} \prod_{b} \gamma_{a b}^{-1} \sim \sigma_{a}
$$

$\gamma_{a b}$ is in $\prod_{\alpha} S_{n_{a b}^{\alpha}}$.

Need constraint/defect $\cdot \begin{aligned} & \mu_{a}=1 \\ & \mu_{b}=1\end{aligned}$

Part 2 : 2d TFTs4D ... gen functions

These large N formulae in terms of delta functions can be used to derive simple generating functions - in the form of infinite products. The form of the denominators are simply related to the structure of the quiver - will illustrate by examples (general formula in 1301.1980).
1-node, 1-edge (Half-BPS)

$$
\prod_{i=1}^{\infty} \frac{1}{\left(1-t^{i}\right)}
$$

1-node, 3-edges (eighth-BPS)

$$
\prod_{i=1}^{\infty} \frac{1}{\left(1-t_{1}^{i}-t_{2}^{i}-t_{3}^{i}\right)}
$$

This formula was first written in F. Dolan 2005

Part 2 : 2d TFTs4D ... gen functions

Conifold case

$$
\begin{aligned}
& \mathcal{N}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=\sum_{n_{1}, n_{2}, m_{1}, m_{2}} N\left(n_{1}, n_{2}, m_{1}, m_{2}\right) a_{1}^{n_{1}} a_{2}^{n_{2}} b_{1}^{m_{1}} b_{2}^{m_{2}} \\
& =\prod_{i=1}^{\infty} \frac{1}{\left(1-a_{1}^{i} b_{1}^{i}-a_{1}^{i} b_{2}^{i}-a_{2}^{i} b_{1}^{i}-a_{2}^{i} b_{2}^{i}\right)}
\end{aligned}
$$

This is a remarkably simple formula - obtained by converting permutation sums, into sums over conjugacy classes, labelled by cycles lengths i.
Even simpler - as obtained by substitution :

$$
F\left(y_{12}, y_{21}\right)=\frac{1}{\left(1-y_{12} y_{21}\right)}
$$

$$
\mathcal{N}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=\prod F\left(y_{21} \rightarrow a_{1}^{i}+a_{2}^{i} ; y_{12} \rightarrow b_{1}^{i}+b_{2}^{i}\right)
$$

Part 2 : 2d TFTs4D ... gen functions

\mathbb{C}^{3} / Z_{2} case

$$
\begin{aligned}
& \mathcal{N}_{\mathbb{C}^{3} / Z_{2}}\left(a_{1}, a_{2}, b_{1}, b_{2}, c, d\right) \\
& =\prod_{i=1}^{\infty} \frac{1}{1-a_{1}^{i} b_{1}^{i}-a_{1}^{i} b_{2}^{i}-a_{2}^{i} b_{1}^{i}-a_{2}^{i} b_{2}^{i}-c^{i}-d^{i}+c^{i} d^{i}}
\end{aligned}
$$

Again there is a basic F function, $F\left(y_{11}, y_{12}, y_{21}, y_{22}\right)$ which gives the above after substitution

$$
\begin{aligned}
& \mathcal{N}_{\mathbb{C}^{3} / Z_{2}}\left(a_{1}, a_{2}, b_{1}, b_{2}, c, d\right)= \\
& \prod_{i} F\left(y_{11} \rightarrow c^{i}, y_{21} \rightarrow a_{1}^{i}+a_{2}^{i}, y_{12} \rightarrow b_{1}^{i}+b_{2}^{i}, y_{22} \rightarrow d^{i}\right)
\end{aligned}
$$

where

$$
F\left(y_{a b}\right)=\frac{1}{\left(1-y_{11}-y_{22}-y_{12} y_{21}+y_{11} y_{22}\right)}
$$

Part 2 : 2d TFTs4D ... gen functions

In general the F function is

$$
F=\frac{1}{\operatorname{Det}(1-Y)}
$$

and there is a simple substitution to get the desired trace generatin gfunction

$$
\mathcal{N}\left(x_{a b ; \alpha}\right)=\prod_{i} F\left(y_{a b} \rightarrow \sum_{\alpha} x_{a b ; \alpha}^{i}\right)
$$

Part 3 : Quiver as Calculators - Finite N counting and

 orthogonal basesThe above formulae are valid when N is sufficiently large. The finite N counting formulae can be written in terms of Littlewood Richardson coefficients - the form of the expression can be read off from the quiver diagram.
for the 1 -node, 1 -edge quiver

$$
N(n, N)=p_{N}(n)=\sum_{\substack{R \vdash n \\ M(R) \leq N}} 1
$$

giant graviton physics in AdS/CFT - stringy exclusion principle For the 1-node, 3-edge quiver

$$
N\left(n_{1}, n_{2}, n_{3}, N\right)=\sum_{r_{1} \vdash n_{1}} \sum_{r_{2} \vdash n_{2}} \sum_{r_{3} \vdash n_{3}} \sum_{\substack{R \vdash n \\ I(R) \leq N}} g\left(r_{1}, r_{2}, r_{3} ; R\right)^{2}
$$

Part : Quivers as calculators, finite N, orthogonality

Part 3 : Quivers as calculators, finite N, orthogonality

For conifold :

$$
\begin{aligned}
& \quad N\left(n_{1}, n_{2}, m_{1}, m_{2}\right)=\sum_{\substack{R_{1} \vdash n \\
I\left(R_{1}\right) \leq N /\left(R_{2}\right) \leq N}} \sum_{\substack{R_{2} \vdash n}} \sum_{r_{1} \vdash n_{1}} \sum_{r_{2} \vdash n_{2}} \sum_{s_{1} \vdash m_{1}} \sum_{s_{2} \vdash m_{2}} \\
& \quad g\left(r_{1}, r_{2}, R_{1}\right) g\left(r_{1}, r_{2}, R_{2}\right) g\left(s_{1}, s_{2}, R_{1}\right) g\left(s_{1}, s_{2}, R_{2}\right) \\
& n=n_{1}+n_{2}=m_{1}+m_{2} .
\end{aligned}
$$

Part 3 : Quivers as calculators, finite N, orthogonality

For the conifold

Part 3 : Quivers as calculators, finite N, orthogonality

For the \mathbb{C}^{3} / Z_{2} case
ember 2013

Part 3 b : Orthogonal bases

Back to 1-node, 1-edge quiver:
Using Wick's theorem and the basic 2-point function

$$
<Z_{j}^{i}\left(Z^{\dagger}\right)_{l}^{k}>=\delta_{j}^{k} \delta_{l}^{i}
$$

we can calculate the correlators

$$
<\mathcal{O}_{\sigma_{1}} \mathcal{O}_{\sigma_{2}}^{\dagger}>
$$

which give an inner product on the space of local operators.

Part 3 : Quivers as calculators, finite N, orthogonality

This inner product is diagonalized by

$$
\begin{aligned}
& \mathcal{O}_{R}=\sum_{\sigma} \chi_{R}(\sigma) \mathcal{O}_{\sigma} \\
& <\mathcal{O}_{R} \mathcal{O}_{S}^{\dagger}>=f_{R} \delta_{R S}
\end{aligned}
$$

Proof uses orthogonality properties of characters e.g.

$$
\frac{1}{n!} \sum_{\sigma} \chi_{R}(\sigma) \chi_{S}(\sigma)=\delta_{R S}
$$

This diagonalization was done and used to propose a map between Young diagram operators and giant gravitons in AdS/CFT
Corley, Jevicki, Ramgoolam 2001
extended to half-BPS sugra backgrounds Lin, Lunin, Maldacena 2004
Recent tests (2011-2012) using DBI in AdS \times S - Bissi ,Kristkjanssen, Young, Zoubos ; Caputa, de Mello Koch, Zoubos ; Hai Lin

Part 3 : Quivers as calculators, finite N, orthogonality

For general quivers, the $\chi_{R}(\sigma)$ are replaced by what we called Quiver characters, which are obtained by inserting permutations in the quiver diagram, interpreting the resulting in terms of $D_{i j}^{R}(\sigma)$ and branching coefficients $B_{i, i_{1},,_{2} \cdots}^{R \rightarrow r_{1}, r_{2} \cdots ; \nu}$

The quiver characters have analogous orthogonality properties to ordinary S_{n} characters. And lead to orthogonal multi-matrix operators for quiver theories.

For the multi-edge single node quiver, this was understood in 2007/2008,
Kimura, Ramgoolam
Brown,Heslop,Ramgoolam
Collins, De Mello Koch, Bhattacharyya, Stephanou

The LR coefficients $g\left(R_{1}, R_{2}, R_{3}\right)$, with
$R_{1} \vdash n_{1}, R_{2} \vdash n_{2}, R_{3} \vdash n_{1}+n_{2}$, give the multiplicity of $R_{1} \otimes R_{2}$ of the subgroup $S_{n_{1}} \times S_{n_{2}}$ in the reduction of the irrep R_{3} of $S_{n_{1}+n_{2}}$.

$$
V_{R_{3}}^{\left(S_{n_{1}+n_{2}}\right)}=\bigoplus_{R_{1}, R_{2}} V_{R_{1}} \otimes V_{R_{2}} \otimes V_{R_{3}}^{R_{1}, R_{2}}
$$

The multiplicity space can be given an orthogonal basis, labelled by an index ν which takes values $1 \leq \nu \leq g\left(R_{1}, R_{2}, R_{3}\right)$ Correspondingly there are branching coefficients

$$
\left|R, i>=\left|R_{1}, R_{2}, \nu ; i_{1}, i_{2}><R_{1}, R_{2}, \nu ; i_{1}, i_{2}\right| R, i>\right.
$$

These branching coefficients are associated with vertices of the diagram, and $D_{i j}^{R}(\sigma)$ to the lines. This gives a quantity labelled by σ_{1}, σ_{2} and the \vec{R} and $\vec{\nu}$ labels. (no state labels - all contracted).

These quiver characters have the invariances we saw before

$$
\chi_{\mathbf{L}}^{Q}\left(\sigma_{a}\right)=\chi_{\mathbf{L}}^{Q}\left(\prod_{b} \gamma_{b a} \sigma_{a} \prod_{b} \gamma_{b a}^{-1}\right)
$$

and obey orthogonality relations e.g

$$
\sum_{\sigma_{a}} \chi_{\mathbf{L}_{1}}^{Q}\left(\sigma_{a}\right) \chi_{\mathbf{L}_{2}}^{Q}\left(\sigma_{a}\right) \sim \delta_{\mathbf{L}_{1}, \mathbf{L}_{2}}
$$

The operators

$$
\mathcal{O}_{\mathbf{L}}\left(X_{a b ; \alpha}\right)=\sum_{\sigma_{a}} \chi_{\mathbf{L}}^{Q}\left(\sigma_{a}\right) \mathcal{O}_{\sigma_{a}}\left(X_{a b ; \alpha}\right)
$$

are orthogonal in the free field inner product - obtained by Wick contraction rule from

$$
\left\langle X_{a_{1} b_{1} ; \alpha_{1}} X_{a_{2}, b_{2} ; \alpha_{2}}^{\dagger}\right\rangle=\delta_{a_{1} a_{2}} \delta_{b_{1} b_{2}} \delta_{\alpha_{1}, \alpha_{2}}
$$

Part 4 : Comments and future directions.

- The 2D TFT also gives a description of the correlators at large N.
- Chiral ring structure constants - selection rules - all Young diagrams combine according to LR rule. Multiplicity indices more complicated - but the structure can be captured by a diagram - obtained by cutting and gluing the diagrams for the 3 operators.
- There are equivalences - in some cases the same 4D observable can be given in different ways in the TFT2. A complete characterization of the equivalences would be good - categorical description of the TFT2 + defects.

- Hamiltonians on the gauge invariants e.g 2-matrix problem

$$
H_{2}=\operatorname{tr}[X, Y][\check{X}, \check{Y}]
$$

In planar limit- Heisenberg spin chain. At finite N brane arguments imply that the BPS states of this Hamiltonian connect with $S^{N}\left(\mathbb{C}^{2}\right)$, i.e N bosons on \mathbb{C}^{2}.

- There should be analogous statements for general quivers. The Hamiltonians are not known - from first principle. But conceivably, could be determined by requiring the correct space of ground states - $S^{N}(X)$; integrability at large $N+$ knowledge of the space of marginal operators (comment of Alessandro)
- BPS states (null eigenstates of H_{2}) can be described as symm-traces $+1 / N$ corrections using permutation groups.
(papers of Vaman, Verlinde (2002) ; Brown, Heslop, Ramgoolam (2007), Brown (2010) Pasukonis, Ramgoolam (2010)

$$
\Omega^{-1} P
$$

- A complete orthogonal finite N description is missing although there are partial results using Brauer algebras

Kimmura, Ramgoolam - Branes, anti-Branes and Brauer algebras (2007) ; Kimura - Quarter BPS from Brauer algebra (2010)).

- "Permutation TFT2" formulations of 4D QFT combinatorics away from zero coupling also relevant to integrability in giant graviton dynamics - where we expand around a large Yong diagram $\chi_{R}(X)$ and study the Y-imputities using the $\chi_{r_{1}, r_{2} ; \nu_{1}, \nu_{2}}^{R}$ restricted Schur basis for 2-matrix system.

Giant graviton oscillators - Giatanagas, de Mello Koch, Dessein, Mathwin (2011)
A double coset ansatz for integrability in AdS/CFT - de Mello Koch, Ramgoolam (2012)

- Permutation TFT2 - a unifying description of a vareity of QFT combinatorics of gauge invariant operators ...interesting to explore further ...

